
DOT/FAA/TC-15/27

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport
New Jersey 08405

Reverse Engineering for
Software and Digital Systems

February 2016

Final Report

This document is available to the U.S. public
through the National Technical Information
Service (NTIS), Springfield, Virginia 22161.

This document is also available from the
Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
U.S. Government assumes no liability for the contents or use thereof. The
U.S. Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein solely because they are considered
essential to the objective of this report. The findings and conclusions in
this report are those of the author(s) and do not necessarily represent the
views of the funding agency. This document does not constitute FAA
policy. Consult the FAA sponsoring organization listed on the Technical
Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.
DOT/FAA/TC-15/27

2. Government Accession No. 3. Recipient's Catalog No.

 4. Title and Subtitle

REVERSE ENGINEERING FOR SOFTWARE AND DIGITAL SYSTEMS

5. Report Date

February 2016

 6. Performing Organization Code

7. Author(s)
George Romanski1, Mike DeWalt2 for phase 1 – research, and Dewi Daniels3for
phase 2 – Validation.

8. Performing Organization Report No.

9. Performing Organization Name and Address
1Verocel, Inc. 234 Littleton Road, Suite 2B, Westford MA 01886

10. Work Unit No. (TRAIS)

2Certification Services, Inc., P.O. Box 1569, Eastsound, WA 98245-1569
3Verocel Limited, 129 Devizes Road, Hilperton, Trowbridge, UK, BA14 7AZ

11. Contract or Grant No.

DTFACT-09-C-00023

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
950 L’Enfant Plaza SW, 5th Floor
Washington, DC 20024

13. Type of Report and Period Covered
Final Report

 14. Sponsoring Agency Code
 AIR-134

15. Supplementary Notes
The Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division COR was Charles Kilgore.

16. Abstract
Reverse engineering (RE) is a class of development processes that starts with detailed representations of system software or
hardware description for a device and applies various techniques to produce more generalized, less-detailed representations. The
goal is to have more abstract representations that can be used to understand and consider the structure and intent of the more
detailed representations. RE has been used in many industries, including aircraft applications for mechanical, hardware and
software components. The scope of this report covers RE software and electronic hardware device applications for airborne
systems and equipment.

The Federal Aviation Administration sponsored this research project to provide a clear understanding of what should be
considered RE for airborne software and airborne electronic hardware (AEH) devices and under what conditions it could be
deployed or restricted in the aircraft certification environment. This report provides an overview of the aviation industry’s views
of RE, the potential issues of employing RE for safety-critical airborne systems, recommendations for when RE application is
acceptable, and some associated criteria for successful implementation.

The RE development process is the opposite of the traditional waterfall model that has been a well-known commodity to the
certification authorities; therefore, RE, which is much less known, poses a concern to the certification authorities. Without a
common set of recognized and accepted terminology, definitions, and constraints on the processes and other issues, the
certification authorities are forced to provide case-by-case evaluations of the different RE proposals.

This report provides the research results for RE. The intended audience includes practitioners who develop compliance evidence,
as well as evaluators for airborne software and AEH to be approved under RTCA documents DO-178B and DO-254, respectively.
The report proposes a framework for RE of software and electronic hardware for airborne systems and equipment.

This report also validates that framework by presenting two case studies. The software case study chosen is a subset of an Ada
runtime library. This library was chosen because it is distributed under the GNU General Public License and because it has
previously been approved to DO-178B Level A as part of a specific aircraft project. The AEH case study was based on the
certification of a system with two programmable logic devices. The intent of these case studies was to validate the framework
against two examples that were developed using RE and approved by the FAA.
17. Key Words

Reverse engineering, Software, DO-178, CAST-18, DO-254,
Complex electronic devices

18. Distribution Statement
This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the
Federal Aviation Administration William J. Hughes Technical
Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 120

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

We would like to thank Kelly Hayhurst from the NASA Langley Research Center for her
valuable contribution to the survey. We also thank the Federal Aviation Administration Review
Team, consisting of Barbara Lingberg, Charles Kilgore, Richard Spencer, Srini Mandalapu, and
Will Struck, for their technical support and guidance throughout the project.

iii

TABLE OF CONTENTS

EXECUTIVE SUMMARY viii

1. INTRODUCTION 1

1.1 Background 1
1.2 Purpose and Scope 2

1.2.1 Why is This Report Needed? 2
1.2.2 Intent of the Report 3

1.3 Section Overviews 4

2. SURVEY AND INDUSTRY EXPERIENCE 5

2.1 Industry experience 5
2.2 Industry perspective from survey 5

2.2.1 Software Survey Results 5
2.2.2 CEH Survey Results 6

2.3 Terminology 7

2.3.1 Reverse Engineering 7
2.3.2 Configuration Management of Reverse Engineered Artifacts 8
2.3.3 Certifier 8
2.3.4 Forward Engineering 8

3. FRAMEWORK FOR PERFORMING RE 9

3.1 Software Development Processes and Sequence Dependencies 9
3.2 Compatibility of Regulatory Guidance With RE Processes 9
3.3 Roles 12
3.4 Processes 13

3.4.1 An Example of Source Code to LLR Development 13
3.4.2 Generic RE Processes 15
3.4.3 Inputs 15
3.4.4 Outputs 16
3.4.5 Entry Criteria 17
3.4.6 Exit Criteria 17
3.4.7 Process Description 18

3.5 The RE Aspects of Software Verification 18
3.6 Generic RE SME Verification Process 20

iv

3.6.1 Inputs 20
3.6.2 Outputs 21
3.6.3 Entry Criteria 21
3.6.4 Exit Criteria 22
3.6.5 Process Description 22

3.7 Acceptance Criteria 22

4. VALIDATION OF FRAMEWORK 23

5. RECOMMENDATIONS 23

6. CONCLUSIONS 25

7. REFERENCES 25

APPENDICES

 A—CASE STUDY: ANALYSIS OF PROJECTS COMPLETED AT VEROCEL
 B—REVERSE ENGINEERING SURVEY
 C—REVERSE ENGINEERING SURVEY RESULTS

D—ANALYSIS OF ISSUES AND THEIR POTENTIAL MITIGATIONS
E—VALIDATION OF FRAMEWORK FOR SOFTWARE
F—VALIDATION OF FRAMEWORK FOR AIRBORNE ELECTRONIC
HARDWARE

v

LIST OF FIGURES

Figure Page

1 Example processes for development and review of LLRs using RE 14

2 Generic processes for development and review of different abstraction layers 15

vi

 LIST OF ACRONYMS

A/D Analog/digital
AEH Airborne electronic hardware (includes complex electronic hardware and simple

electronic hardware)
ARTE Ada Runtime Environment
CAST Certification Authorities Software Team
CEH Complex electronic hardware
COTS Commercial off-the-shelf
DER Designated engineering representative
DOD Department of Defense
DVD-ROM Digital Versatile Disc – Read-Only Memory
ELOC Effective lines of code
FAA Federal Aviation Administration
GNAT GNU New York University Ada 9X Translator
GNU A recursive acronym for “GNU’s Not Unix!”—Unix-like computer operation

system developed by the GNU Project
GPL General Public License
HAS Hardware accomplishment summary
HIS High integrity software
HLR High-level requirement
ICU Interface Control Unit
KLOC Kilo (thousand) lines of code
LAL Less abstract layer
LLR Low-level requirement
MAL More abstract layer
NaN Not a number
PHAC Plan for Hardware Aspects of Certification
PLD Programmable logic device
PR Problem report
PSAC Plan for Software Aspects of Certification
RE Reverse engineering
RESP Reverse Engineering Software Plan
SAS Software Accomplishment Summary
SDP Software Development Plan
SME Subject matter expert
SOI Stage of involvement
SUNECO Training aid identifying the combination of SUfficient, NEcessary, and COrrect
TSO Technical Standard Order
UAS Unmanned aircraft system
VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

vii

EXECUTIVE SUMMARY

Reverse Engineering (RE) is a class of development processes that start with detailed
representations of software for a system, or a hardware description for a device, and apply
various techniques to produce more generalized, less detailed representations. The goal is to have
more abstract representations that can be used to understand and consider the structure and intent
of the more detailed representations. RE has been used in many industries, including aircraft
applications for mechanical, hardware, and software components. The scope of this report is the
electronic hardware devices and software applications of RE for airborne systems and
equipment.

The Federal Aviation Administration (FAA) sponsored this research task to provide a clear
understanding of what should be considered acceptable RE for airborne software and airborne
electronic hardware (AEH) devices, and under what conditions it could be deployed or restricted
in the aircraft certification environment. The report is designed to provide an overview of the
aviation industry’s views of RE, potential issues of employing RE for safety critical aviation
systems, recommendations for when application of RE is acceptable, and some associated
criteria for successful implementation.

The RE development process is of concern to the certification authorities because it is opposite
of the traditional waterfall model that has been a well-known commodity. Without a common set
of recognized and accepted terminology, definitions, and constraints on the processes and other
issues, the certification authorities are forced to provide case-by-case evaluations of the different
RE proposals.

This report provides the research results of the RE development process. The intended audience
includes practitioners (who develop compliance evidence) and evaluators so airborne software
and AEH can be approved under RTCA documents DO-178B and DO-254, respectively. This
report may be used to obtain:

• A view of how others in the aviation industry understand and use RE. This includes
analysis of views held by software and electronic hardware developers, certification
authorities, and designated engineering representatives (DERs).

• A consistent and uniform view of RE developed from industry experience, industry
perspective, and research within the field.

• Insight into the software planning processes that may need to be adjusted in support of
RE. As RE is a development process, planning processes may need adjustment to ensure
the integrity of the process steps.

• Insight into verification processes may also need adjustment to ensure that the resulting
life cycle data satisfies the objectives of DO-178B and DO-254.

• Awareness of potential hazards and risks to a project if RE is used without ensuring
various safeguards are employed. If information is misused in an RE process, certain

 viii

faults or errors could be concealed and could remain as latent faults or errors. By
exposing the potential vulnerabilities, the process activities could be adjusted to mitigate
the potential hazards, risks, and errors.

• Additional objectives and activities, or constraints on the current objectives and activities,
could ensure that the use of RE is consistent with airworthiness requirements.

This research used historical data from certification projects conducted by Verocel, Inc. All
Verocel projects considered for this study were developed using RE and achieved certification
approval.

The research also employed an anonymous survey that was developed and sent to more than
3900 participants in the aviation industry worldwide. The survey was designed to elicit opinions,
experience, issues, and implementation success and failures relating to the use of RE. Survey
responses were analyzed and the findings show some common threads and important results that
form part of the basis of the report conclusions.

The first phase of this study proposed a framework for conducting RE on aircraft certification
projects. This framework emphasizes the role of subject matter experts in ensuring that the as-
implemented behavior is safe for its intended use and that the relevant domain and systems
knowledge has been captured in the requirements and design documentation. The second phase
of the study has validated the framework by means of two case studies. The first case study was
the “GNU’s Not Unix!”—Unix-like computer operation system developed by the GNU Project
(GNU) New York University Ada 9X Translator Ada Runtime Environment (ARTE) for the
following reasons:

• It is open source software distributed under the GNU General Public License.

• Verocel has previously provided RE certification evidence for ARTE. As a result, it was
approved by the FAA for use in airborne software applications, up to and including DO-
178B Level A on the Boeing 787 Dreamliner.

The second case study was an AEH case study based on the certification of two programmable
logic devices. The certification evidence was developed to design assurance level B and
delivered in support of a military project using DO-254. The intent of these case studies was to
validate the framework against two examples that were developed using RE and approved.

These case studies assessed the compliance of the RE previously carried out by Verocel against
the framework proposed. It was found that the RE process carried out by Verocel was consistent
with the proposed framework. A comparison of these completed projects with the proposed
framework resulted in a small number of recommendations that would improve the Verocel
process. Because the certification evidence created for both projects has already been accepted,
these results provide confidence that new projects complying with the framework would also be
acceptable.

 ix

1. INTRODUCTION

1.1 BACKGROUND

Reverse engineering (RE) is a class of development processes that starts with detailed
representations of an implementation and applies various techniques to produce more
generalized, less detailed representations. The goal is to have more abstract representations that
can be used to understand and consider the structure and intent of the more detailed
representations. Some examples would be the creation of requirements from source code or a
complex electronic hardware (CEH) device implemented using an Application-Specific
Integrated Circuit from the Very High Speed Integrated Circuit hardware description language
(VHDL) code. This type of development is very different from the traditional (forward) waterfall
approach, and is therefore of concern to the certification authorities.

RE is not restricted to electronics. It is also used to produce design drawings from physical parts
[1] or to obtain the design and design approval of aircraft parts under the Federal Aviation
Administration (FAA) Parts Manufacturing Authority process FAA Order 8110.42C [2]. RE is
accepted in principle by the FAA.

The following are examples of why RE is used:

• In some communities, it is used so existing systems can be improved or modified; for
example, software programs that were written in one language and then translated into
another language and implemented on modern hardware.

• In other communities, it is used to generate artifacts needed to maintain existing

implementations.

• Some use RE to gain information that was not intended to be published. Most software
licenses prohibit the discovery of intellectual property in a program by RE, yet it is
possible to extract the program intent to bypass license management checks or to create
competing products.

• RE can be used as part of complete life cycles, such as rapid prototyping. Several

possibilities exist including Agile development for which code requirements and design
are developed concurrently without formal baselines, formal life cycle processes, formal
transition criteria, or evolutionary prototyping [3 and 4].

• Open source code is available under various license terms. The General Public License

(GPL) is often used and the source code is freely available if the GPL license is used to
protect the rights of the users. [5] While GPL source code is freely available, other life
cycle data are not. Compilers used under a GPL will have code libraries to support
language features. If these features are used, then the source code will require life cycle
data, and this must be reverse engineered.

1

• Some compilers provide special options that restrict complex programming language
constructs or provide support for these constructs through special code generation
sequences. Rather than use run-time libraries, the compiler may generate equivalent code
in line with the application code. This code needs to be verified and an intermediate
representation generated so verification evidence can be reverse engineered from this less
abstract layer (LAL).

• RE has been recognized as a legitimate engineering discipline [6]. It has been used in

many industries, including aircraft applications for mechanical, hardware, and software
systems. This report concentrates on the software and CEH applications of RE for
aviation applications.

1.2 PURPOSE AND SCOPE

1.2.1 Why Is This Report Needed?

The guidance in DO-178B [7] was designed to be independent of the life cycle process
employed. Section 3.0 of DO-178B states:

“The guidelines of this document do not prescribe a preferred software life
cycle, but describe the separate processes that comprise most life cycles and the
interactions between them. The separation of the processes is not intended to
imply a structure for the organization(s) that perform them. For each software
product, the software life cycle(s) is constructed that includes these processes.”

It further describes many variations of processes that could exist, including a prototyping
strategy. DO-178B, subsection 12.1.4 bullet d states:

“Reverse engineering may be used to regenerate software life cycle data that is
inadequate or missing in satisfying the objectives of this document.”

When a number of applicants proposed to apply RE techniques to their projects, the Certification
Authorities Software Team (CAST) issued a position paper to express their concerns about RE
[8]. RE processes differed between applicants. RE is also applied to hardware being approved
under DO-254 [9]. Without a common set of recognized and accepted terminology and
definitions, the certification authorities were forced to provide case-by-case evaluations of the
different proposals.

To evaluate the issues that may be associated with the use of RE principles, and under what
conditions, if any, they can be used, the FAA sponsored this research project to provide a clear
understanding of what should be considered RE for software and CEH devices and under what
conditions it could be deployed or restricted in the aircraft certification environment.

2

1.2.2 Intent of the Report

This report provides the research results of the RE development process and is intended for
practitioners who develop compliance evidence, as well as for reviewers of software and CEH to
be approved under DO-178B and DO-254, respectively. This report may be used to obtain:

• a view of how others in the aviation industry understand and use RE. This has been
accomplished by conducting a survey and analyzing the results.

• a consistent and uniform view of RE. By analyzing the views presented in the survey
responses, the findings show some common threads that are described in the survey
results analysis.

• insight into the software planning processes that may need to be adjusted in support of
RE. As RE is a development process, planning processes may need adjustment to ensure
the integrity of the process steps.

• insight into the verification processes that may also need adjustment to ensure that the life
cycle data satisfies the objectives of DO-178B or DO-254, although information flow
may not be in accordance with a traditional waterfall model approach. [10]

• awareness of potential risks if RE is used without ensuring various safeguards are
employed. If information is misused in an RE process, certain faults could be concealed
and remain as latent faults/errors. By exposing the potential vulnerabilities, the process
activities could be adjusted to mitigate the potential risks and faults.

• more objectives or activities that may be required in addition to those described in DO-
178B. The DO-178B document describes objectives that must be met to provide
assurance that the system software complies with airworthiness requirements. The
objectives and their application are different, depending on the system’s assurance level.
Additional objectives and activities could ensure that the use of RE is consistent with
airworthiness requirements. Similarly, additional objectives or activities may be required
for CEH beyond those described in DO-254.

• recommendations for the production of a new FAA Job Aid. This could contain practical
information that would assist the certification and development community to deploy and
approve RE processes in a consistent manner.

While RE can be applied to an artifact at any level of abstraction to develop a more abstract
artifact, it is helpful to use a specific example; therefore, this report assumes that low-level
requirements (LLRs) are being reverse engineered from source code. This report is not
necessarily limited to this set of artifacts but is applicable to all artifacts at any level where a
more abstract description is desired.

This report only addresses the activity of developing or discovering more abstract layers (MALs)
from LALs. This report does not deal with reviewing or testing artifacts to generate missing
verification evidence.

3

1.3 SECTION OVERVIEWS

This report provides an overview of the aviation industry views of RE, potential issues of
employing RE for safety critical airborne systems, recommendations for when the application of
RE is acceptable, and some associated criteria for successful implementation.

• Section 2.2 summarizes the important points obtained from the survey conducted to gain
industry perspective about RE. Detailed results of the survey can be found in appendix B.
The appendix can be used to look at detailed differences between various views of the
data. For example, it is possible to see the percentage of projects that have been perceived
as rejected by certification authorities versus developers.

• Section 3 examines the framework within which RE exists. This is based on the basic
principles of RE and potential error sources as informed by the results of the survey and
the issues identified in appendix C.

• Section 4 summarizes two projects that were assessed against the framework to validate
the conclusions of this report.

• Section 5 provides recommendations for guidance that could be used to provide a
consistent approach for developing and approving RE projects and would prohibit
practices that would be error prone. If implemented, these recommendations would
provide visibility to ensure that all the DO-178B and DO-254 objectives can be satisfied
by RE projects that follow the recommendations in this section.

• Section 6 provides some conclusions and proposes the next steps to take based on current
findings and analysis of the survey results.

4

2. SURVEY AND INDUSTRY EXPERIENCE

2.1 INDUSTRY EXPERIENCE

Historical data from the Verocel Problem Reporting databases were gathered. Thirteen projects
were considered, totaling more than 250,000 effective lines of code, which average 357,000 lines
of code per project. These projects were all developed using RE and had certification authority
approval. Sixty-seven percent of the projects were approved by a designated engineering
representative (DER) on behalf of the FAA and 33% of the projects were approved by the
Department of Defense. Information about error rates, error sources, and other details were
extracted and consolidated into a database so that it could be analyzed. The analysis results are
shown in appendix A.

2.2 INDUSTRY PERSPECTIVE FROM SURVEY

A survey designed to elicit opinions, experience, issues, and implementation success and failures
was developed and distributed to more than 3500 participants in the avionics community.
Although the survey was anonymous and worldwide, the expectation was that most of the
respondents would be from the United States and Europe. Appendix B shows the details,
assumptions, and validity discussions of the survey. This section summarizes the important
survey results that form part of the basis of the conclusions in Section 6.

2.2.1 Software Survey Results

There were 162 respondents to the software survey. Roughly 30% of these were certification
authorities and DERs responsible for approving software and the remainder were industry
practitioners. The respondents had an average of 16 years of software development experience.
Forty percent of the respondents reported that they have worked on one or more projects for
which RE was used.

DO-178B [7] Level A and B projects (or applications and products) dominated the RE
application process. Although Level D projects had the fewest respondents, this might be
explained by Level D’s concentration on high-level requirements (HLRs); it is unlikely that
source code would be used to develop HLRs using an RE process. This survey did not test for
this conclusion. The RE process spanned most of the major airplane types (i.e., transport,
regional, and small aircraft) as well as rotorcraft. Low participation was registered for engines,
ground-based systems, and unmanned aircraft systems. More than 65% of the developers have
used RE on approved software. Approximately 60% of the participants work on Technical
Standard Order (TSO) projects while the rest are involved with the issuance of a Type Certificate
or a Supplemental Type Certificate. Additionally, less than 1% of RE projects were not approved
at all (note, this represents only one project, so it should be treated as a potential anomaly). This
demonstrates that RE is widely used by highly experienced certification engineers and
developers and is not a niche development process. With the large prevalence of RE projects, it
is worthwhile to produce guidance and information on the subject.

The vast majority of the respondents believed that RE was used to discover all or some of the
missing higher-level software representations. However, a significant number of respondents

5

included the verification activities as part of the RE process. This demonstrates the need to
provide a standard interpretation of RE to ensure consistency. This is provided and explained in
subsection 2.3.1.

Although the survey respondents provided a strong indication that the FAA guidance was
insufficient, they were not necessarily dissatisfied with the FAA’s approach for granting
approvals. The approval authorities (certification authorities and DERs—the term Certifiers will
hereafter be used for this combination) have approved the overwhelming majority of RE
projects. While 18% of the Certifiers indicated they reject any project that contains RE, the
developers reported that less than 5% of the RE projects were initially rejected. The assumption
was that by providing additional documentation and life cycle data, projects were approved
despite the initial rejection. Of the approved projects, most required modification to the plans or
Plan for Software Aspects of Certification (PSAC). Less than 45% of the Certifiers approving
projects used CAST-18 for information. Almost 20% of the developers used or believed the
certifiers used CAST-18 to evaluate their RE project. The results of the survey indicate that
while RE projects are being approved, there is not a well-defined set of criteria that can be used
by both the Certifiers and developers to ensure a consistent result of approval. Additionally, the
lack of guidance results in unnecessary rework to plans and PSACs.

The majority (about 60%) of the developers indicated that they had access to domain experts
during the RE process. The vast majority of respondents used source code as the starting point to
reverse engineer other required artifacts. More than half of the respondents used RE to produce
missing artifacts from commercial off-the-shelf (COTS) software or from previous projects that
lacked the requisite artifacts. Additionally, a large majority used an iterative approach where
code was developed from draft specifications of the behavior and these, as well as other artifacts,
are refined and developed through multiple iterations of the process. Some respondents indicated
that they developed source code from machine code. A small but significant minority that used
RE indicated that they did not use this process to develop LLRs from source code, but that it was
used for other phases of the life cycle (i.e., HLRs from LLRs). A large number of developers
used tools to assist them in the RE process. Any guidance or recommendations need to be
compatible with these different approaches to RE.

The survey contained a section for free-form comments for many of the questions. Most of the
comments were related to FAA policy. Since these comments did not address any specific
questions in the survey, it was difficult to establish a common theme. The few comments that
were similar concerned criticism of the survey and the guidance provided by the FAA.

2.2.2 CEH Survey Results

Because there were only 19 responses to the survey for CEH, no valid conclusion was drawn
regarding the specific use of RE for CEH. However, because the basic principles use the notion
of higher and lower levels of abstraction (i.e., MAL and LAL) rather than specific artifacts such
as source code, HLRs, LLRs, the principles derived from the software survey results are believed
to be applicable to CEH.

6

2.3 TERMINOLOGY

2.3.1 Reverse Engineering

The following definition of RE was developed and provided in the survey’s introduction (see
appendix B):

“The use of one or more development processes which result in
representations of the software for the target computer environment, and
these processes are analytical techniques using information from a
representation at a level closer to the target computer environment to
produce representations at a more abstract level.”

The survey included explanations in the introduction and adjustments to the questions that
covered the differences for CEH. “The two surveys are very similar but will use a different word
to represent one of the representations. We will use the word ‘Software’ for DO-178B/DO-278
and ‘Programs’ for the equivalent representation used in Programmable Devices for DO-254
[9].” For questions, the wording “Developing source code in a programming language such as
Verilog, VHDL, RTL, etc.” was used in the CEH survey.

To ensure that a common understanding of RE is used, the above definition was explained as
follows:

“RE consists of one or more development processes…”

RE is a development process. One or several processes may be used while using RE. Examples
include LLR development and source code development. RE does not include verification
processes, so reviews, test development, and other verification activities are not the subject of
RE. The verification activities are still required to show compliance with DO-178B.

“…which result in representations of the software for the target environment…”

The representations of the software/airborne electronic hardware (AEH) can take many forms.
This includes requirements, design, and source code/VHDL, but does not include test cases or
tests, which are verification artifacts. The definition does not specify the abstraction levels or the
form of the representation. For example, HLRs or LLRs may be developed in tables, documents,
or even diagrams.

“…and the processes are analytical techniques …”

The processes lend themselves to reasoning in a consistent manner—the processes could be
manual or they could be automated.

“…using information …”

The key to this definition is that information is being used in the development processes.

7

“…produced from a representation at a level closer to the operational system configuration (e.g.,
executable code) than that information produced from a representation at a more abstract level
(object code).”

The lowest level is executable object code for software and the circuitry or burn map for custom
micro coded devices (e.g., AEH); the MAL above that would be object code, bit map, or mask;
the MAL above that would be source code or VHDL; the MAL above that would be LLRs; and
so on.

For example, it is RE if information is used from the source code/VHDL to develop LLRs. It is
not RE if LLRs are developed after the source code, but the source code is not visible to the
requirements developers.

2.3.2 Configuration Management of Reverse Engineered Artifacts

Unless the representations at various levels are identified, versioned, and tracked, it may be
difficult to determine the order in which the representations were developed and whether
information was used from a more specific representation to develop a more abstract
representation. This approach makes it more difficult to determine how much RE, if any, was
used. If it cannot be determined that information was not used in reverse, then the assumption
should be that some level of RE may have occurred.

For CEH devices, the definition follows the same principles, with representations becoming
more specific the closer they are to the final implementation. RE as defined is the process of
using information from a specific representation of the program on a hardware device to produce
a more abstract representation (inductive reasoning).

2.3.3 Certifier

Certifier refers to a member of a certification authority or DER.

2.3.4 Forward Engineering

A process in which each LAL is produced from a MAL (e.g., a process that follows the waterfall
model).

8

3. FRAMEWORK FOR PERFORMING RE

A framework was developed to provide a consistent description of the RE processes that can be
used to expose vulnerabilities and identify potential benefits of the approach. This framework
can be used to develop policy recommendations to capture the objectives and activities that
mitigate the potential vulnerabilities and risks of RE.

3.1 SOFTWARE DEVELOPMENT PROCESSES AND SEQUENCE DEPENDENCIES

Section 3 of DO-178B [7] provides a sequence of independence descriptions of software life
cycle processes, specifically, “The guidelines of this document do not prescribe a preferred
software life cycle, but describe the separate processes that comprise most life cycles and the
interactions between them.” It does not follow that all life cycles constructed of these processes
can be shown to comply with DO-178B. In this section, any life cycle that can be shown to
satisfy the guidance of DO-178B is considered acceptable.

This section identifies three major processes: planning, development, and integral. The
development process is further refined into requirements, design, coding, and integration. The
integral processes are further refined into verification (including reviewing, analyzing, and
testing), configuration management, quality assurance, and certification liaison. Any description
of RE needs to incorporate these processes that reflect the sequencing, transition criteria, and
development activities in a manner that allows for a determination of whether the processes
comply with DO-178B. This is discussed in Section 3.2.

3.2 COMPATIBILITY OF REGULATORY GUIDANCE WITH RE PROCESSES

DO-178B Sections 3—Software Life Cycle, 4—Software Planning Processes, and 5—Software
Development Processes provide the framework for all development processes and associated
guidance. The following paragraphs discuss some incompatibilities among Sections 3, 4, and 5
and how the oversight of RE projects is affected.

Section 3.0 of DO-178B states the following:

“This section discusses the software life cycle processes, software life cycle definition,
and transition criteria between software life cycle processes. The guidelines of this
document do not prescribe a preferred software life cycle, but describe the separate
processes that comprise most life cycles and the interactions between them. The
separation of the processes is not intended to imply a structure for the organization(s) that
perform them. For each software product, the software life cycle(s) is constructed that
includes these processes.”

This allows the individual development and integral processes (verification, quality assurance,
configuration management, and certification liaison) to be described without regard to any
specific life cycle. This permits multiple life cycles to be defined from these processes with
different sequences. Applicants must define their life cycles by providing plans and procedures
describing the individual development, integral processes, and sequencing of these processes and
associated transition criteria to go from one process to another, as described in Section 3.2.

9

Figure 3-1 in Section 3.2 of DO-178B shows some examples of life cycles. These life cycles are
representative of forward engineering approaches.

Although the examples are from forward engineering life cycles, none of the material in Section
3.0 would conflict with a well-defined RE strategy.

Section 4.1 of DO-178B states the following:

“The purpose of the software planning process is to define the means of producing
software which will satisfy the system requirements and provide the level of confidence
which is consistent with airworthiness requirements. The objectives of the software
planning process are:

a. The activities of the software development processes and integral
processes of the software life cycle that will address the system
requirements and software level(s) are defined (subsection 4.2).

b. The software life cycle(s), including the inter-relationships between the
processes, their sequencing, feedback mechanisms, and transition criteria
are determined (Section 3.0).

c. The software life cycle environment, including the methods and tools to be
used for the activities of each software life cycle process, has been
selected (subsection 4.4).

d. Additional considerations, such as those discussed in Section 12, have
been addressed, if necessary.

e. Software development standards consistent with the system safety
objectives for the software to be produced are defined (subsection 4.5).

f. Software plans that comply with subsection 4.3 and Section 11 have been
produced.

g. Development and revision of the software plans are coordinated
(subsection 4.3).”

The remainder of DO-178B Section 4 expands on the above basic principles. Any definition of
an RE life cycle would need to have plans that include the information described in Section 4.1.

10

DO-178B Section 4.6 provides the basic goals of the planning process, review, and assurance, as
listed below:

“Review and Assurance of the Software Planning Process

Reviews and assurance of the software planning process are conducted to ensure that the
software plans and software development standards comply with the guidelines of this
document and means are provided to execute them. Guidance includes:

a. The chosen methods will enable the objectives of this document to be
satisfied.

b. The software life cycle processes can be applied consistently.

c. Each process produces evidence that its outputs can be traced to their
activity and inputs, showing the degree of independence of the activity,
the environment, and the methods to be used.

d. The outputs of the software planning process are consistent and comply
with section 11.” [1]

There is nothing in DO-178B Section 4 that shows a preference or a bias toward either a forward
engineering approach or an RE approach. In summary, the goal of Section 4 is to require plans,
procedures, and standards that will ensure all objectives are satisfied, processes can be applied
consistently, and the implemented processes comply with DO-178B. Any plans or standards for
an RE project that can accomplish this should be acceptable under Section 4.

Section 5 of DO-178B discusses each development process and the assorted objectives and
activities. Some of the guidance in this section is based solely on a forward engineering
approach. Section 5.2.1a lists the objectives associated with the design process. These objectives
specify that the LLRs and architecture are developed from the HLRs. This corresponds to
objectives 3 and 4 summarized in Annex A, Table A-2. The other objectives are worded in a
manner that would make it independent of either a forward engineering or RE development
approach. The current wording in Section 5.2.1a would make it impossible to comply with those
objectives if RE was used.

The remaining sections are devoid of any forward engineering or RE dependencies.

DO-178B Section 12.1.4d states that RE may be used to regenerate software life cycle data that
are inadequate or missing in satisfying the DO-178B objectives. If the certification authorities
wish to provide a consistent implementation and assessment of RE projects, then additional
guidance will be needed to modify the current wording in Section 5.2.1a. Additional explanation
should also be provided to ensure that DO-178B Section 3.2 can include RE projects.

11

3.3 ROLES

There are roles similar to other life cycle descriptions, however, there are unique aspects for RE.
The following roles are identified for the software engineering processes and may be performed
by people with tools or without tools.

• Subject matter expert (SME): A role that possesses knowledge of the final product’s
required behavior and interim representations of the product. This role may or may not
require any software expertise, depending on the representation of the product. This role
can provide judgments on whether the operational behaviors of the product are
acceptable. While the survey used the term domain expert, SME is used to provide a
more general notion not restricted to aviation applications. Examples of SMEs include
experts in autopilot systems, engine systems, operating systems, mathematical functions,
etc. When requirements are being developed from source code, an SME who has
knowledge of the source code is required. This SME could be the original software
developer. Inconsistencies and errors in the source code would be resolved by this SME.
For complex systems, it is unlikely that any one individual will possess expert knowledge
of the system domain as well as detailed knowledge of the source code, so a team of
SMEs will be required. In a forward engineering process, this role provides the starting
point for development; hence, it is implicit. In RE processes, this role must be made
explicit.

• Requirements developer: A role that possesses the ability to develop more abstract
requirements from less abstract requirements or design. For example, this role could
develop the LLRs from the source code or HLRs from LLRs. As this role develops
requirements, then it must also establish trace data from the source of the information to
the destination of the information. Provided the trace data are bidirectional, traceability
from HLRs to LLRs to source code is established.

• Architecture developer: A role that possesses the ability to develop architectural
descriptions from some detailed implementation representation. For example, this role
could develop the architecture description from the source code.

• Source code developer: In the RE context, this could mean (a) a role that possesses the
ability to develop the source code from the object code, or (b) a role that develops source
code for which the LLRs and architectural descriptions are incomplete or nonexistent.

• Verification role: A role that confirms the properties described in the Verification plan
(DO-178B, Section 11.3 and supported by Section 6.0.). There are two types of
properties.

− Properties that apply to the relationship between representations produced at
different abstraction levels. Examples include traceability (do the HLRs trace to
the correct LLRs and vice versa?), compliance (does the intended behavior of a
set of LLRs represent the intended behavior of the HLRs to which they are
traced?).

12

− Properties that apply to specific products. Examples include, verifiability (are the
HLRs, LLRs, and source code verifiable?), consistency (do the requirements,
architecture descriptions, or source code comply with the requirements, design, or
coding standards?), etc.

• Configuration manager: A role that establishes the configuration management properties
of any life cycle data (e.g., identification of individual components, version control,
establishment of baselines, change control, etc.). There are no unique properties required
for RE, but proper application of configuration management states may be more critical
during RE because the products are baselined or versioned in reverse order (source code
is baselined or versioned before the LLRs are developed, baselined, or versioned before
the HLRs are developed).

• Quality Assurer: A role that ensures that the process and procedures defined in the plans
are being followed by all executers of that plan, including the transition criteria. This role
is also responsible for performing the conformity review. There is nothing unique to RE
about this role assuming the plans and standards have been completely defined and, if RE
is being used, then this is also described in the plans and standards, including the
transition criteria for the defined processes.

3.4 PROCESSES

This section defines a generic prototype for performing an RE activity for software.

3.4.1 An Example of Source Code to LLR Development

An example of a set of RE activities is shown in figure 1. Note that only the pertinent activities
for the example are shown. A more efficient approach may be to combine some of these
activities with a set of processes. The process plans should describe this together with the
evidence produced.

13

Figure 1. Example processes for development and review of LLRs using RE

The source code is developed without LLRs or architectural descriptions. Even if some LLRs
and architectural descriptions exist, unless they are baselined and controlled through
configuration management, then some level of RE may occur.

The source code should be reviewed to ensure its properties are satisfied. This can be done in the
absence of requirements because this is focusing on process compliance with coding standards
and internal consistency. At this point, the source code should be baselined and changes should
follow a consistent problem tracking process. In an RE process, this may be performed
informally during the Develop LLRs Process and repeated formally during the Source Code
Review Process.

The LLRs can be developed using available information. The source code could be used in this
RE activity, but, if available, any additional specifications, descriptions, and higher-level
requirements may also be used. The sources of information should be baselined during the
development process to ensure a consistent starting point. Traceability to higher-level
requirements is required but is not shown in this diagram.

The LLRs may be baselined and reviewed for internal consistency and conformance to the
requirements standards.

The source code may then be reviewed against the LLRs, and both of these must be baselined. At
this point, the activity focuses on the consistency (compatibility) of the source code against its
requirements. Note that this activity may find problems in the source code or LLRs, as both are
used in the review process.

Develop Code

Develop LLRs

Review Code
Properties

Review LLRs
Properties

Review
Code/LLR

Consistency

Source Code

Source Code Properties
Review evidence

LLRs Properties
Review evidence

LLRs

LLRs/Code Consistency
Review evidence

Change Requests

Change Requests

14

3.4.2 Generic RE Processes

The example shown in figure 1 may be generalized so it applies to any level during the
development and verification life cycle (see figure 2). The RE process is a combination of
individual processes that perform some activities using a set of inputs to produce an output.
Some of the inputs are used to guide and control the activity while others provide information
that is used directly to produce the output.

The processes in this section assume that an artifact at a MAL is being developed from an
artifact at an LAL. A generic process is defined first and is then instantiated for different specific
processes along with how the process must be designed to comply with DO-178B.

Develop LAL

Develop MAL

Review LAL
Properties

Review MAL
Properties

Review
MAL/LAL

Consistency

LAL

LAL Properties
Review evidence

MAL Properties
Review evidence

MAL

MAL/LAL Consistency
Review evidence

Change Requests

Change Requests

Figure 2. Generic processes for development and review of different abstraction layers

3.4.3 Inputs

3.4.3.1 The LAL Artifact

The LAL artifact is the result of a completed process activity. This may be a complete artifact
(e.g., all of the HLRs for a software or AEH program), a part of an artifact (e.g., the LLRs for
part of the software or AEH program), or a component of an existing artifact or system (e.g., a
math library source file that includes the functions required by the software or AEH program).

The LAL artifact must be identified and versioned, and it must be possible to obtain an exact
copy of the LAL artifact from a configuration management system.

15

3.4.3.2 Project-Specific RE Development Process

The process activities to be performed must be described. This description could be part of the
standard processes if they describe RE, or they could be specific procedures, addendums, work
orders, etc., which make appropriate adjustments for RE.

3.4.3.3 The RE Standards Applicable to the Development Process

In a forward engineering process plan, the standards for requirements, design, and the source
code development should exist before any of the requirements, design and source code are
written. In an RE process, the code may exist before a formal coding standard is written.

In an RE process, a coding standard should be developed before any development of the
requirements is started. This coding standard development will provide a level of assurance so
that, although the original developer did not produce the code in accordance with a coding
standard, the engineer developing the traceability between requirements and source code will
provide this first-level check.

The standards should be no different whether a forward engineering or RE process is used, but it
is important that they be available and used in accordance with the development and verification
processes.

3.4.4 Outputs

3.4.4.1 MAL Product

This may be a complete or partial product, depending on the specific defined RE life cycle
process. For example, if a program uses information managed as a linked list, then a set of
functions may be provided in a library that groups these functions together. Such a library may
have LLRs developed before the rest of the software. This would be a partial artifact and, if the
requirements can be identified, versioned and baselined, they can be developed ahead of the rest
of the program. The final MAL product would be a collection of the partial artifacts. This
collection would be identified with a baseline identifier so that it could be carried forward to the
certification package and identified in a software or AEH configuration index.

An alternative iterative life cycle may eventually produce artifacts that contain all of the LLRs
required, but the artifacts could be partially completed containing sections for the requirements
that have been developed at any particular iteration. The artifacts must be correctly versioned
and controlled so that only authorized changes are incorporated in subsequent revisions. The
final artifacts would be identified and carried forward to the certification package and identified
in the software AEH configuration index.

The MAL product need not be a specific artifact while in partial state. The information could be
held in a requirements repository or database, or organized in tables or in sets of related
hypertext files. It is key that the artifacts are clearly identified and can be retrieved for
inspection. There may be several levels of MALs, which link the levels of abstraction. At the
highest level (the most abstract), the MAL would be represented by HLRs, which are traced to

16

system requirements. These should be written in such a way that an SME can understand the
HLRs and can confirm the traceability between system requirements and HLRs.

3.4.5 Entry Criteria

3.4.5.1 Status of the Inputs

This would be a specification of the configuration management criteria for the LAL product
whose information would be used by the RE process.

3.4.5.2 Status of the Process

This would be a specification about the process description’s status for the development process
being started. For example, this could require that the plans and standards for the process be
approved and released and the PSAC be approved or planning review completed.

3.4.5.3 Status of the Standards

Other inputs that may affect the development of the MAL or play a role in detecting errors would
be the standards. These should be under configuration control.

For example, in the case of developing LLRs from source code for a math library, the transition
criteria for starting the development of the LLRs would require that the source code be under
configuration control and verified to comply with a set of minimal coding standards.

3.4.6 Exit Criteria

3.4.6.1 Status of the Output

The output status is a specification of the configuration management and the development
criteria needed on output artifacts to complete the development process.

Different exit criteria may be defined for partial completion and for total completion of the RE
process. If only complete baselines are used, then all of the code could be reviewed against the
coding standard, the development of all of the LLRs for that code, and the development of HLRs
for those LLRs, respectively. This requires careful configuration control as well as problem
report (PR) tracking because a revision to a version of the output will contain changes for many
change requests. An iteration of the MAL product could contain many updates.

The MAL partial product could be hierarchical to reflect the software or requirements hierarchy.
In the case of developing LLRs from source code for a math library, for example, the partial
artifact could be the LLRs for a single math function. Another partial artifact could be the LLRs
for a different math function from the same math library.

It could be that an LLR is reviewed and the LLR and its source code are under configuration
control. This might require that all source code be traced to the LLR and that all LLRs have
completed a design review to include the SME.

17

3.4.6.2 Completion Criteria

The completion criteria of the artifact depend on how the artifact is organized and managed.

If the artifact is a single entity, such as a complete LLR document, then the completion criteria
must include the change history of all changes made to the document and show how each change
was dispositioned.

If the artifact is organized hierarchically, then the completion criteria must also be organized
hierarchically. If all of the functions in the math library have had LLRs developed, then the LLR
representing the math library itself can be completed, as it is at that point that its completion can
be confirmed.

The completion criterion for a partial artifact is a statement of the form “ready for review.”

3.4.7 Process Description

The process description describes the complete set of process steps that would transform the
inputs to the outputs, including any process path selections due to the entry and exit criteria. This
also discusses any actions for exceptions. For example, the process may state that the developer
must establish all of the LLRs for any “.c” file for a math library that meets the entry criteria.

The process description should reference the applicable standards to be used or project-specific
procedures that may refine the activities. For example, during the development of some LLRs
from source code using an RE process, the engineer may find sequences of conditions that use
arithmetic operators instead of logical operators. This may violate the coding standards because
arithmetic operators combining conditions do not prescribe an evaluation order. Short circuit
logical operators are typically preferred. The coding standard violation should be raised as a PR
during the development process and should not wait until the subsequent code review process,
which cannot start until the LLRs are baselined.

During the RE process, the engineer should find and record problems in the LAL product if they
cannot develop a complete MAL product. For example, if a function in the source code has a
parameter that points to a value to be used, then a requirement may be inserted for a robustness
check to ensure the pointer has been initialized before use. If the source code does not have a
null pointer check prior to dereferencing the parameter, then this should be raised as a PR and
not left to the source code reviewer to address.

3.5 THE RE ASPECTS OF SOFTWARE VERIFICATION

The verification process for the delivered system must have some means of establishing total
correctness (i.e., consistency with the requirements). Since software must execute in the system
context, the system behavior must be assured to be correct, and this is where traditional forward
engineering processes differ from RE processes.

In forward engineering, each individual development process uses an assumed correct artifact as
input. The process can introduce some errors, which must be discovered by the verification
process. These errors can be detected by analysis, reviews, or tests based on the correctness of

18

the input to a previous process. In the case where source code is developed from LLRs, it can be
assumed that the LLRs are correct and any discrepancies between the LLRs and the source code
will result in changes to the source code. The common theme of all these evaluations is the
assumption on the correctness of the inputs.

In RE, we may know little or nothing about the correctness of the input to the process. For
example, having only the source code for math libraries, it is unknown if the source code
properly implements the math libraries or, in some cases, which math functions are implemented.
As MAL is developed from LAL (e.g., LLRs from source code), it can only be assured that the
MAL is a faithful representation of the LAL, but not whether all the required functions are
present (completeness), desired, or correct. At some point, the correctness of the final MAL (e.g.,
system requirements or HLRs) must be established.

All the software requirements are verified by reviews and analysis in accordance with the
DO-178B objectives. Any new derived requirements or changes to existing derived requirements
should be provided to the system processes, including the system safety assessment process. If
any system requirements were found to be inadequate or incorrect, the RE process should
capture the issues and refer them to the system processes for resolution. The SME should be
involved in the certification liason with the system processes.

The SME role in relation to RE is critical. The SME may be aided by a specification for a similar
system, a set of desired system specifications refined from some knowledge of the end system, or
a combination of the two. The RE process must establish the correctness of the last MAL artifact
in the development chain.

The verification process, in general, would be the same for any specific development process
regardless of the processes’ sequence. The goal would be to evaluate an artifact produced by a
development process. This evaluation would include a comparison of the developed product
(e.g., LLR) against the artifact from which it was developed (e.g., source code) for the DO-178B
criteria of traceability and compliance. The two-way traceability would ensure that the artifacts
are a faithful representation of each other. Additionally, the DO-178B process provides
assurance that specific desirable properties exist in the developed artifact. These verification
goals are independent of the order of development. For example, the verification process for a
specific development process is not sensitive to whether the source code was developed from the
LLR or the LLR was developed from the source code. The description of the development
objectives in DO-178B Section 5 tends to be dependent on the direction of development. For
example, Table A-2 objective 4 states, “Low-level requirements are developed,” but DO-178B
Section 5.2.1a states “The software architecture and low-level requirements are developed from
the high-level requirements.” This is inconsistent with the statement in DO-178B Section
12.1.4d, which states, “Reverse engineering may be used to regenerate software life cycle data
that is inadequate or missing in satisfying the objectives of this document.” The verification
objectives in DO-178B Section 6 tend to be independent of the direction of development. For
example, table A-4, objective 1, reads “Low-level requirements comply with high-level
requirements,” and DO-178B Section 6.3.2a states, “The objective is to ensure that the software
low-level requirements satisfy the software high-level requirements and that derived
requirements and the design basis for their existence are correctly defined.”

19

Another aspect of the RE process is the behavioral discovery process. In some cases the RE
process might discover a behavior that is desirable at the end system level but the SME role did
not include this behavior in their system view.

This may occur during a forward engineering process or an RE process. In a forward engineering
process the insertion of additional behavior is normally limited to additions of robustness checks,
which catch errors discovered through possible consistency violations (e.g., range checks before
indexing). Other insertions are less likely because the developer is producing the LAL under the
assumption that the input as presented in the MAL is correct.

The RE processes proposed include propagating information from the LAL to the MAL and
raising PRs if necessary. The RE process may develop derived LLRs, which would be
propagated to the SME who would interact with the System Development and Safety
Assessment processes.

Another source of problems may be lack of functionality in the LAL, or the SME may identify
required functionality at the system level that was not contained in the original LAL used to
initiate the RE process. Conversely, the LAL may contain functionality not needed at the MAL
or system level for a specific installation, potentially resulting in extraneous or dead code at the
system or product function level.

Process models proposed for an RE approach should incorporate an SME to be a part of the
verification process.

3.6 GENERIC RE SME VERIFICATION PROCESS

3.6.1 Inputs

The inputs to the SME verification process include the highest level of software requirements,
which should be traced to a set of system requirements. The SME must be familiar with the
intended behavior of the system to ensure that it matches the intended behavior of the software.

3.6.1.1 The MAL Artifact

The MAL artifact may be a complete or partial artifact. An example would be a situation in
which all of the reverse engineered HLRs are available for an aircraft power control system, or
only a specific subset of HLRs for the power distribution system associated with the engine-start
function are available. It is also possible that portions of the reverse engineered HLRs are
available, as would be the case in an iterative development process.

3.6.1.2 The SME Knowledge Base

The SME knowledge base is the collection of data used to verify and validate the correctness and
completeness of the MAL artifact, and this could be a set of forward engineered system
requirements (the mental model of a human expert), perhaps aided by specifications from a
similar or previous system.

20

3.6.1.3 RE Standards Applicable to the SME Verification Process

The standards used by SMEs would be the same as those used by software developers and
verification engineers. As the SMEs also work at the system boundary, they may be required to
use additional System Development and Safety Assessment standards.

3.6.2 Outputs

3.6.2.1 Verification Records

Verification records may be a complete or partial artifact, depending on the specific defined RE
life cycle. For example, an iterative life cycle may produce multiple versions of HLRs to be
verified as more functionality is added from the RE process.

3.6.2.2 The PRs

PRs identify the discrepancies between the SME knowledge base and the MAL artifact.
Although some PRs may be genuine problems, others may be issues raised by the developers due
to incomplete information or to confirm specific assumptions. For example, these could represent
errors between the SME view of how a tangent function should respond and the HLR for the
tangent function. Responses to denormalized floating-point numbers could be underspecified,
and the treatment for Signaling NaN (not a number) could have been specified while a Quiet
NaN could have been missed. The HLR developer could have raised an issue using a PR that
addresses the relative precision of the tangent function as its return value approaches the
asymptote.

Even though the PRs are resolved, they form a record of the discussion between the SME and the
development and verification teams.

It is important to identify the SME in the PR process.

3.6.3 Entry Criteria

3.6.3.1 Status of the Inputs

Input status is a specification of the configuration management and verification criterion needed
on an input artifact or information before the specific SME verification process would start. For
example, in the case of HLRs for a math library, the transition criteria for starting the SME
verification activity could be a requirement that the HLR be under configuration control and all
verification tasks for the HLRs be completed with no open PRs. An additional requirement could
be to document the system requirements for the math library and put it under change control.

3.6.3.2 Status of the Process

This would be a specification about the status of the process description before the SME
verification process is started. For example, this could require that the plans and standards for the
SME verification process be released and the PSAC approved or planning review completed.

21

3.6.4 Exit Criteria

3.6.4.1 Status of the Output

The output status is a completion specification of the SME verification results.

Different exit criteria may be defined for partial and total completion of each process activity.
For example, there may be a requirement that each HLR can be traced to a review record.

3.6.5 Process Description

The process description describes the complete set of process activities that would transform the
inputs to the outputs, including any process path selections due to entry and exit criteria. This
would also discuss any actions for exceptions. For example, the process may state that the
system engineer completes the system requirement or HLR checklist for each system function. If
there are any functions discovered in the HLRs that should be added to the system requirements,
a system level PR should be generated.

3.7 ACCEPTANCE CRITERIA

In a forward engineering process, developers are expected to understand the MAL before they
can develop the LAL artifacts. A source code developer will need to understand the LLRs before
developing the code; otherwise, the code will not comply with the LLRs. In an RE process, the
LLRs may be developed from source code without due regard to the difference in the abstraction
level and the resulting LLRs being too similar to the code (e.g., pseudocode). Because such
translations may be performed with little intellectual effort or understanding of the code’s intent,
these practices should not be permitted on RE projects because they do not provide the same
level of confidence as a forward engineering process.

The difference between abstraction levels should demonstrate some level of understanding,
either by differences in the representations or the provision of additional information, such as
context information or rationale between HLR and LLR mapping.

The other acceptance criteria follow on from those required for DO-178B and DO-254 [1].

22

4. VALIDATION OF FRAMEWORK

The framework was validated by examining two projects that had already been accepted by the
FAA and assessing how closely these projects matched the proposed framework. One software
project and one AEH project were chosen. The two projects were:

1. GNAT Ada Run-Time Environment (ARTE), a project using the GNU (“GNU’s Not
Unix!”) unix-like computer operating system and the New York University Ada 9X
Translator (compiler). This project was chosen because it is open source software
licensed under the GPL and can be distributed freely.

2. An AEH project involving two programmable logic devices.

The use of RE on both projects was found to be consistent with the framework described in this
report; it is understood that if an RE project adopts the framework suggested in this research, it
will most likely be acceptable to the FAA. The detailed assessment of these projects can be
found in appendices D and E.

5. RECOMMENDATIONS

The recommendations resulting from this research are:

1. If RE is used on a project, then it is important that the process plans and standards clearly
describe the information flow during the development of the system, software, or AEH
components. While this is expected from a well-written set of plans and standards, the
information flow may be assumed and not documented clearly. The transition criteria,
configuration management (especially when data are placed under configuration control),
problem reporting, change control, and status accounting may differ from the
corresponding activities on a forward engineering project.

2. The PSAC or Plan for Hardware Aspects of Certification (PHAC) should be open and
direct in describing the proposed RE processes. Failure to explain how RE is to be used
on the project is likely to lead to rejection of the PSAC or PHAC or cause problems when
the extent of RE is uncovered during the SOI audits.

3. The QA records should describe in-process audits conducted to ensure that process plans
and standards are being followed. While this is not specific to RE, it may be more
difficult to track the information flow, which requires additional attention.

4. The use of SMEs is critical to any RE project. Their use should be identified in the PSAC
and PHAC and required as part of the guidance. Depending on the extent of RE on a
particular project, SMEs are likely to be required to cover the following topics:

a. Domain and system knowledge, and certification liaison with system processes

b. Software architecture and source code

23

5. Careful consideration should be given to the difference between abstraction levels to
ensure that there is sufficient intellectual value added to demonstrate a thorough
understanding of the two representations being traced and verified. The difference
between the abstraction levels should indicate sound engineering judgment for a
higher-level representation that could be transformed to an equivalent lower-level
representation. For example:

a. If the LLRs are a simple restatement of the code (e.g., pseudocode that is very
close to the code), then tests based on such LLRs will exercise only the
implementation and not the expected behavior and functionality. The capacity of
low-level testing to detect incorrect functionality, missing functionality, and
unintended functions will be severely compromised. The design decisions
representing the difference between LLRs and code are nonexistent or unsound.

b. If the gap between the HLRs and LLRs is too great, it will be difficult to verify
that the HLRs were developed correctly into LLRs, and derived requirements may
be missed. The design decisions between HLRs and LLRs are too big, and it
would be too difficult to develop HLRs into equivalent LLRs using sound design
decisions.

6. It is particularly important that the LAL should be placed under configuration
management before commencing the development of the MAL. It can be difficult to
determine whether RE is being used if the artifacts are not under proper configuration
management.

7. When reviewing each reverse-engineered artifact, the following issues should be
considered:

a. Is there more functionality in the LAL than required by the MAL — are the LAL
elements necessary?

b. Is there less functionality in the LAL than required by the MAL — are the LAL
elements sufficient?

c. Are there any errors in the LAL-MAL translation — is the translation between the
LAL and the MAL correct?

8. It should be a policy that when RE is performed, all robustness checks should be called
out as LLRs. This policy would ensure that robustness checks are considered in the
testing process, the source to LLR reviews, and propagated up in line with DO-178B [7]
objectives.

9. The Software Requirements Standards and Software Design Standards should define how
and when RE techniques are to be used.

10. The process plans should describe and formalize the use of SMEs.

24

11. The review checklists should ensure that the LLRs show some level of understanding of
the source code’s intent and are not too close a match to the source code.

While the report is written using DO-178B [7] as the primary reference, the recommendations
also apply to AEH components reverse engineered to comply with DO-254 [9].

6. CONCLUSIONS

The survey found that the majority of respondents have already used reverse engineering (RE);
however, the literature survey found very little published research on the application of RE
techniques to safety-critical software. The majority of the reported projects using RE were
accepted by the FAA, although usually with changes requested to the Plan for Software Aspects
of Certification (PSAC) or Plan for Hardware Aspects of Certification (PHAC).

Although DO-178B contains an explicit reference to RE, the majority of the guidance is written
from a forward engineering perspective. Therefore, additional guidance for RE is needed to
incorporate the recommendations made in Section 5 of this report. The development of this
additional guidance is out of this report’s scope. The references in this report relate to DO-178B.
While the belief is that this report should be applicable to DO-178C based on the state of the
document when this report was written, an evaluation of the impact of DO-178C on this report
will need to be done.

The framework was validated by assessing two RE projects, already accepted by the FAA. One
software project and one airborne electronic hardware (AEH) project were chosen. The RE
activities performed on the two projects were found to be compatible with the framework
described in this report. The software project is described in appendix D, while the AEH project
is described in appendix E.

The survey showed the importance of projects being open and honest in their use of RE. The RE
aspects need to be addressed during the planning phase; otherwise the PSAC and PHAC may be
rejected. The certification authorities need to agree with the use of RE; otherwise the software
may fail to gain approval when the extent of RE is revealed during the stage-of-involvement
audits.

The case studies confirmed the importance of involving subject matter experts (SMEs) in the RE
process. SMEs provide the expert knowledge of the domain, required system behavior, software
architecture, and source code that might otherwise be missing in an RE environment. It is
unlikely that a single individual will have all the required expertise, so an RE project is likely to
need a team of SMEs.

7. REFERENCES

1. Guidance for Parts Manufacturer Approval of Turbine Engine and Auxiliary Power Unit
Parts Under Test and Computation, ANE-110, September 8, 2009.

2. FAA Order 8110.42C, Parts Manufacturer Approval Procedures, AIR-110, June 23,
2008.

25

3. Agile Manifesto, http://agilemanifesto.org/iso/en/, accessed June 30, 2015

4. Evolutionary Rapid Development,” SPC document SPC-97057-CMC, version 1.00.04,
June 1997.

5. GNU General Public License, http://www.gnu.org/licenses/gpl-3.0.txt, accessed June 20,
2015.

6. Peter H. Feiler, “Reengineering: An Engineering Problem,” Special Report CMU/SEI-93-
SR-5, 1993.

7. RTCA/DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification,” December 1, 1992.

8. Certification Authorities Software Team (CAST) Position Paper 18, “Reverse
Engineering in Certification Projects” June 2003.
http://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/cast/cast_papers/media/cast-18.pdf

9. RTCA/DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” April
19, 2000.

10. Royce W.W., “Managing the development of large software systems,” Institute of
Electrical and Electronics Engineers, Proceedings, IEEE WESCON, August 1970,
pp. 1–9.

26

APPENDIX A—CASE STUDY: ANALYSIS OF PROJECTS COMPLETED AT VEROCEL

Over the last 11 years, there were many projects completed at Verocel for which reverse
engineering (RE) was used to develop certification evidence in compliance with DO-178B [A-1].

The following data were extracted from the Problem Report (PR) database. Thirteen completed
projects were included and analyzed. Only 13 projects were used because they were diverse.
Projects from the same customer that were variants were not included because they might have
skewed the results. The starting point for these RE projects were source code and any other
available high-level requirements (HLRs), specifications, and descriptions that varied by project.

The 13 projects had a total of 1/4 million effective lines of code (ELOC). For the C programming
language, an ELOC excludes blank lines, comment lines, and lines that only contain a beginning
bracket “{ˮ and keywords such as “then” or “else.” For the Ada programming language,
statements correspond to semicolons “;”. For assembly code, three lines of assembly code are
treated as one ELOC. Using this assembly code expansion metric, it was found at Verocel that
the functionality as expressed by requirements and verified by tests and other artifacts
corresponds to the functionality of other programming languages. This metric is used to
normalize the correspondence between the artifacts.

The majority of the code approved was level A, and the percentages of Levels A, B, and C that
can be found in an example RE project are shown in figure A-1.

Figure A- 1. Example RE projects: software levels

A-1. PROBLEM DETECTION METHOD

As each problem is reported in the database, its severity is recorded. Level 1 errors are those that
must be fixed and Level 2 errors are those that should be fixed if the errors are not; additional
verification or justification is required to mitigate the problem. An example would be a square
root function that returned a wrong value if called with a negative number. If analysis showed

Series1,
A,

154154,
61%

Series1,
B,

95672,
38%

Series1, C,
1500, 1%

Project by Level

A-1

that only calls with positive numbers are made, the code need not be fixed, although a
recommendation would be made that it should be. Level 3 errors include comment errors that
should be fixed but need not be. The PR remains open until the code is changed, which draws
attention to anyone attempting a change to the source file. Level 4 errors are typically
insignificant and include formatting errors (e.g., indentation not being compliant with the coding
guide).

For the analysis carried out below, only Level 1 and Level 2 errors were considered, which are
approximately 50% of the total set.

PRs include information describing how the problem was found:

1. Analysis—Manual inspection of any life cycle data, typically performed when
developing a more abstract layer using a less abstract layer (LAL) (e.g., finding errors in
the source code when developing low-level requirements (LLRs) or in the HLRs as they
are being developed through RE using the LLRs).

2. Observation—manual inspection not related to the specific artifact being worked on. For
example, while developing requirements for one component, an error could be observed
on a different but related component.

3. Beta test—Synonymous with functional test.

4. Functional test—A requirements-based test. Problems are usually found while tests are
being developed or if some different but related software component is changed and the
change affects the function being tested.

5. Coverage analysis—Faults found during the coverage analysis process.

6. System test—Faults found during operational testing; for example, checking system
response to a dial being turned and held. Note that Verocel typically focuses on software-
based verification, and system testing is performed using additional tests. This may skew
the statistics shown below, but only in the ratios between System and Software.

The database included 2064 Level 1 and Level 2 PRs. As shown in figure A-2, 77% of the
problems were found by engineers using engineering judgment (analysis + observation +
review), and 23% of the problems were found by automation (beta test + functional test +
coverage analysis + system test). More importantly, 54% of the errors were found during the
manual RE development effort (analysis).

A-2

Figure A- 2. Example RE projects: problem-detection method

Even when using RE, the majority of the errors are still found through intellectual effort.

It should be noted that typically, the projects that Verocel undertakes for RE are software-based,
where the software has been developed and is reasonably robust. Informal tests have been
completed but are not requirements-based because the LLRs have not been developed. The
complete test suite is developed after the LLRs are written.

Series1, Analysis,
1108, 54%

Series1,
Observation, 168,

8%

Series1, Review,
315, 15%

Series1, Beta Test,
159, 8%

Series1, Functional
Test, 205, 10%

Series1, Coverage
Analysis, 87, 4%

Series1, System
Test, 22, 1%

Problem Detection Method

A-3

A-2. PROBLEM TYPES

The PRs are classified as they are reported. Figure A-3 shows the problem types that were
recorded in the database.

Figure A-3. Example RE projects: problem types

Documentation errors—Errors in user manuals and other descriptions and specifications.

Modified functionality—These are problems that identify errors in the intended behavior. The
errors will result in changes to the requirements, design, code, and possibly the documentation.
These are always checked by subject matter experts.

As can be seen, most of the problems are raised against the source code. Requirement errors
represent 12% of the changes required. Requirement errors include imprecise, ambiguous, or
incorrect system requirements or HLRs presented with the source code.

Series1,
Requirements

Error, 252, 12%

Series1, Code Error,
1464, 71%

Series1, Design
Error, 41, 2% Series1,

Comme
nt Error,
24, 1%

Series1,
Documentation,

75, 4%

Series1, Error
Handling, 5, 0%

Series1, Test,
54, 3%

Series1,
Coverage, 50, 2%

Series1, Modified
Functionality, 99, 5%

Problem Types

A-4

A-3. CODE ERRORS

Figure A-4 shows source code errors in isolation from the other types of error.

Figure A-4. Example RE projects: source code errors

As shown in figure A-4, 75% of the errors in the source code are found using manual processes
(analysis + observation + review) and 25% are found using tools and technology (beta test +
functional test + coverage test + system test).

The striking observation is that the most prolific error-detection method when performing RE is
engineering judgment, which is performed as a development process that produces LLRs and
establishes the traceability between LLRs and source code.

Although informal tests have been done, a rigorous review of the code with sufficient detail to
develop LLRs reports more requirement errors than any other method.

Series1, Analysis,
849, 58%

Series1,
Observation, 108,

7%

Series1, Review,
150, 10%

Series1, Beta
Test, 147, 10%

Series1,
Functional
Test, 156,

11%

Series1, Coverage
Test, 38, 3%

Series1, System
Test, 16, 1%

Code Errors

A-5

A-4. COMPARISON WITH FORWARD ENGINEERING

Capers Jones [A-2] has captured a wealth of statistics on software productivity and quality. As a
comparison between the RE process at Verocel and the Jones’ gathered statistics, consider the
following.

The code delivered for certification to Verocel is complete, runs, and has had debugging
performed on it. Verocel’s task is to reverse engineer the certification evidence, not debug the
software.

Jones cites four severity levels. For a typical C program of about 12,500 lines of code, the
distribution of the errors is shown in figure A-5.

Figure A-5. Forward engineering severity levels

This shows that the two top levels (critical and significant) are almost 13% of the total
((1+4)/(total)), whereas, at Verocel, the distribution is 50% for Level 1 and 2 errors compared to
all the errors. Note that at Verocel, the PRs use the term “Error.” Capers Jones uses the term
“Defects,” “Faults,” and “Bugs.” For the purpose of this analysis, the words are considered
synonymous. The Capers Jones terminology is used to describe his results.

Series1, Critical, 1,
3% Series1, Significant,

4, 10%

Series1, Minor, 14,
36%

Series1, Cosmetic,
20, 51%

A-6

Jones describes some defect statistics using the following two terms:

• Defect potential—the total universe of errors or bugs that might be expected in a software

project.

• Defect removal efficiency—The percentage of potential defects eliminated prior to
releasing a software project to customers. It is usually measured by comparing the
volume of bugs found prior to release with the volume of bugs reported by users in the
first year of deployment.

Military software developed using Department of Defense (DOD)-STD-2167A [A-3], and DOD-
STD-2168 [A-4] use a forward engineering model.

Figure A-6 describes the number of potential errors found for DOD software in each of the
software lifecycle steps, (with bad fixes representing erroneous attempts at correction).

Figure A-6. Forward engineering potential defects per thousand lines of code (KLOC)

Using the forward engineering approach and comparing it with figure A-3, many more errors are
found during the requirement and design verification processes compared to the coding

Series1,
Requirements, 22.5,

29%

Series1, Design, 23.9,
31%

Series1, Coding, 17.6,
23%

Series1,
Documentation, 9.1,

12%

Series1, Bad Fixes,
4.2, 5%

A-7

verification processes. The increase in errors is not unexpected; requirements and design reviews
are done before coding is started. The total number of defects per kilo lines of code (KLOC)
shown in figure A-6 is 77 (with rounding). Based on a 13% ratio of Level 1 and 2 errors obtained
from figure A-5, the total Level 1 and 2 defects is ten per KLOC. This is slightly higher than
what is normally expected at Verocel. Over these projects, we averaged eight Level 1 and Level
2 errors per KLOC.

Assuming a distribution of just 13% of these bugs being severity 1 and 2, figure A-7 shows one
residual defect per KLOC after delivery reported within a year (total = 7.89 * 0.13 %).

Figure A-7. Forward engineering residual defects per kilo (thousand) lines of code

Using an RE approach, there were no delivered errors reported against the software for the
projects used in this analysis. There were a few minor errors that were reported, but by analysis
they were deemed inconsequential and were documented at the time of delivery.

Series1,
Requirements, 2.93,

37%

Series1, Design, 1.39,
18%

Series1, Coding, 0.7,
9%

Series1,
Documentation,

1.82, 23%

Series1, Bad Fixes,
1.05, 13%

A-8

REFERENCES

A-1 RTCA/DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification,” December 1, 1992.

A-2. Capers Jones, Software Quality, “Analysis and Guidelines for Success,” 1997.

A-3. DOD-STD-2167, Military Standard, Defense System Software Development,
June 4, 1985.

A-4. DOD-STD-2168, Military Standard, Defense System Software Quality Program,

April 29, 1988.

A-9

APPENDIX B—REVERSE ENGINEERING SURVEY

Table B- 1 Survey Introduction

Reverse Engineering Survey
This survey is investigating the use of reverse engineering during the development of
safety critical systems in the aviation industry.

We are seeking responses from people who have experience with DO-178B, DO-278 and
DO-254 projects even if you have not used Reverse Engineering as it helps us establish the
prevalence of the practice.
G1 - Goals

To establish what software and hardware-program development disciplines are used in
reverse engineering.

To determine if specific software and hardware-program development processes are
more prevalent in reverse engineering

To determine whether large or small projects are more prevalent in reverse engineering.
To establish differences in opinions of the acceptability and problems with reverse

engineering between certification authorities and developers.
To see if there are any differences between ground and airborne approaches and attitudes

to reverse engineering

Note that there are two questionnaires, one for DO-178B/DO-278 and one for DO-254.
Please complete the one appropriate for you, or both if both apply. The two surveys are
very similar but will use a different word to represent one of the representations. We will
use the word "Software" for DO-178B/DO-278 and "Programs" for the equivalent
representation used in Programmable Devices for DO-254. Where the survey references
DO-178B, the intent is to cover both DO-178B and DO-278 in the same questions.

The results of the survey will be used to help us develop a research report. This report is
expected to describe a framework for the use and acceptance of reverse engineering in the
context of the overall safety of aviation systems.

All of the cells in the response column start off white and will remain white if they are
empty. As the information is filled in they will change color. On some older versions of
Excel, not all of the cells will be color coded - simply complete the cells and move down to
the next one. Some cells will change color if an earlier response is filled in which makes a
subsequent question not-applicable. Simply fill in the cells in sequence. When a cell is
selected, a pulldown list may be provided. Please select the response from the pull-down if
one is offered. You may find copy/paste quicker for providing answers in the cells. If a
value is not supported, then an error will be indicated.

 To ensure we have a consistent set of responses, we propose a definition of Reverse
Engineering, together with an explanation of what we mean for each part of the definition.
Please use the definition we have provided.

B-1

The use of one or more development processes which result in representations of the
software for the target computer environment, and these processes are analytical
techniques using information from a representation at a level closer to the target
computer environment to produce representations at a more abstract level.
To ensure that a common understanding of Reverse Engineering is used while responding
to the survey, the above definition is broken down and explained. Please consider the
following:
Reverse Engineering consists of one or more development processes
Reverse Engineering is a development process. One or several processes may be used
while using reverse engineering. Examples include Low-level requirements development ,
source code development. Reverse engineering does not include verification processes, so
reviews, test development, and other verification activities are not the subject of reverse
engineering. The verification activities are still required to show compliance with DO-
178B.
which result in representations of the software for the target environment,

The representations of the software can take many forms. This includes requirements,
design, source code, but does not include test-cases or tests which are verification artifacts.
The definition does not specify the abstraction levels or the form of the representation. For
example, high or low-level requirements may be developed in tables, documents, or even
diagrams.
and the processes are analytical techniques

They lend themselves to reasoning in a consistent manner – the processes could be
manual or they could be automated
using information

This is the key in this definition, information is being used in the development processes
produced from a representation at a level closer to the operational system configuration
(e.g., executable code) than that information produced from a representation at a more
abstract level (object code).

The lowest level is Executable code, and the more abstract level above that would be
Object code, and the more abstract level above that would be Source code, and the more
abstract level above that would be low-level requirements, and so on.

If information is used from the source code to develop low-level requirements – that is
reverse engineering.

 Unless the representations at various levels are identified, versioned and tracked it may be
difficult to determine the order in which the representations were developed, and it may
also be difficult to determine if information was used from a more specific representation
to develop a more abstract representation. This approach makes it more difficult to
determine how much Reverse Engineering, was used. If you cannot determine that
information was not used in reverse, then please assume that some level of Reverse
Engineering may have occurred.
 For complex electronic devices the definition follows the same principles, with
representations becoming more specific the closer they are to the final implementation.
Reverse engineering as defined is the process of using information from the more specific
representation to produce the more abstract representation (inductive reasoning).

B-2

Table B-2. Reverse engineering using DO-178B

Q1 Do you develop, evaluate, review, or approve software for aeronautical
systems?

Q2 Do you develop, evaluate, review, or approve hardware for aeronautical
systems?

Q3 How many years experience have you had in the following areas: (Type a number
rounded to closest number of years - in the range 0.. 50)

Q3-1
Developing system specification for the avionics combination of hardware

and software or for a hosted function (e.g. requirements for a Navigation
Receiver)

Q3-2 Developing software high-level requirements (HLR) for the desired behavior
of the software product (e.g. HLR and other high level representations...)

Q3-3
Developing design specifications that will be used by programmers to

produce source code (e.g. LLR/architecture, call trees, collaboration diagrams,
sequence diagrams, ..)

Q3-4 Developing source code in a programming language such as C, C++, Ada,
Pascal, assembly language, machine language etc.

Q3-5
Leading a team to develop system specifications for the avionics

combination of hardware and software or for a hosted function (e.g.
requirements for a Navigation Receiver)

Q3-6
Leading a team to develop software high-level requirements (HLR) for the

desired behavior of the software product (e.g. HLR and other high level
representations...)

Q3-7
Leading a team to develop design specifications that will be used by

programmers to produce source code (e.g. LLR/architecture, call trees,
collaboration diagrams, sequence diagrams,..)

Q3-8 Leading a team to develop source code in a programming language such as
C, C++, Ada, Pascal, assembly language, machine language etc.

Q3-9 Certification authority approving/reviewing software for compliance to DO-
178B

Q3-10 DER/Auditor approving/reviewing software for compliance to DO-178B.

Q4 What is your current role? (select all that apply) - Please select a Main Role for your
responses to subsequent questions.

Q4-1
Developing system specification for the avionics combination of hardware

and software or for a hosted function (e.g. requirements for a Navigation
Receiver.)

Q4-2 Developing software requirements (HLR) for the desired behavior of the
software product (e.g. HLR and other high level representations.)

Q4-3
Developing design specifications that will be used by programmers to

produce source code (e.g. LLR/architecture, call trees, collaboration diagrams,
sequence diagrams, …)

Q4-4 Developing source code in a programming language such as C, C++, Ada,
Pascal, assembly language, machine language etc.

B-3

Q4-5
Leading a team to develop system specification for the avionics combination

of hardware and software or for a hosted function (e.g. requirements for a
Navigation Receiver.)

Q4-6
Leading a team to develop software requirements (HLR) for the desired

behavior of the software product (e.g. HLR and other high level
representation...)

Q4-7
Leading a team to develop design specifications that will be used by

programmers to produce source code (e.g. LLR/architecture, Call trees,
collaboration diagrams, sequence diagrams, ...)

Q4-8 Leading a team to develop source code in a programming language such as
C, C++, Ada, Pascal, assembly language, machine language etc.

Q4-9 Certification authority approving/review software for compliance to DO-
178B.

Q4-10 DER/Auditor approving/reviewing software for compliance to DO-178B.

Q5
What size of project teams have you been involved in? This includes all the people

needed to produce software for an aircraft or aircraft related function?
(select all that apply)

Q5-1 1-5

Q5-2 6-10

Q5-3 11-20

Q5-4 21-50

Q5-5 over 50

Q6
For the projects you have been involved, in please select the levels of software data

where Reverse Engineering was used
(select all that apply) for DO-178B/DO-278 levels.

Q6-1 Level A / Assurance Level 1

Q6-2 Level B / Assurance Level 2

Q6-3 Level C / Assurance Level 3 or 4

Q6-4 Level D / Assurance Level 5

Q7 What type of aircraft or related systems are associated with the product lines you
work on: (select all that apply)

Q7-1 Ground Based aviation systems

Q7-2 transport aircraft (Part 25)

Q7-3 regional aircraft (Part 25)

Q7-4 business aircraft (Part 91)

Q7-5 general aviation aircraft (Part 23)

Q7-6 Rotorcraft

B-4

Q7-7 unmanned air vehicles

Q7-8 military transport aircraft

Q7-9 other military aircraft

Q7-10 other, [please specify] e.g. engines.

Q7-11 not applicable

Level of experience

Q8 What percentage of the aircraft projects you work on receive a TSO
Authorization?

Q9

Which of the following best describes your own level of experience with
developing or approving software in compliance with DO-178B, or DO-278,
either for airborne or ground-based systems? (consider one and use this for
subsequent questions)

Understanding of reverse engineering terminology
Goal: To establish what terminology is being used in industry.

Q10 There are several interpretations of Reverse Engineering in Industry, which of the
following statements would you consider true: (select all that apply)

Q10-1 Starting with only the source code and no other material and producing all
the other life cycle documentation

Q10-2 A third party receives requirements, design, and source code documentation
and performs verification to create the verification records

Q10-3
System or software high-level requirements are used to create source code in

an informal manner to obtain advance visibility of issues and then the other
documentation is created to fill in the gaps and verified

Q10-4 The source code is reviewed as means to improve the design and
requirements

Q10-5 Starting with source code and some documentation, create all required
documentation, and perform verification to create verification records

Q10-6 Others

Determination of certification authority/DER acceptance of the reverse engineering
process

Goal: to determine the certification experience of people using reverse engineering

Q11
Developers: Have you been involved in a project which used reverse

engineering ? Please consider a specific project in response to questions Q12 to
Q20

 If your response is 'yes' please answer the following questions for one of those
projects: (select all that apply)

Q12 What was the (Assurance) Level of the software?

Q13 Was the approach described in the PSAC?

B-5

Q14
Was CAST-18 position paper on reverse engineering referenced by either the

certification authority or by the developer as a means of determining what
issues need to be addressed?

Q15
Once the certification authority/DER was notified that this process was being

used, did they require interpretations, constraints or additional lifecycle data to
those described in the DO-178B, or DO-278 documents?

Q16 Was the project approved using the process described above? (Q13, Q14, or
Q15)

Q17 Did you have access to Domain Experts, while performing reverse
engineering?

Q18 Was the use of Reverse Engineering techniques rejected?

Q19
Would you say the written FAA policy and guidance is ample, barely

sufficient, or insufficient in providing you with the information needed to see
approval of Reverse Engineering Projects.

Q20 Overall how satisfied are you with the FAA’s approach to granting approvals
for the project

Q21 Questions Q22 to Q27 only apply to authority/DER responders in Q4-9, Q4-
10?

 If your response is 'yes' please answer the following questions: (select all that apply)

Q22 If the developer can provide evidence that just the objectives of DO-178B are
satisfied and no additional information is provided, have you granted approval?

Q23 Have you used the CAST-18 position paper on reverse engineering to
establish the issues with reverse engineering that need to be addressed?

Q24 Have you required modifications or additions to the plans (SDP, SVP,
SQAP,…) or the PSAC to accommodate Reverse Engineering?

Q25 Do you reject any process that uses Reverse Engineering to demonstrate
satisfaction of objectives of DO-178B?

Q26 What percentage of projects using the approach specified above do you
reject? (a rough indication is sufficient)

Q27 How many projects using the approach specified above have you rejected?

How much reverse engineering is occurring
Goal: To find out what proportion of the projects are using some form of reverse
engineering

Q28 Is reverse Engineering more prevalent during the development of specific lifecycle
artifacts? Only rough estimates are requested.

Q28-1 What percentage of your HLRs are developed from Design (LLRs)?

Q28-2 What percentage of your LLRs are developed from Code?

Q28-3 What percentage of your Source code is developed from machine code?

B-6

Q28-4 What percentage of your HLRs are developed from source code?

Q29 What type of development methodologies have you used with reverse engineering
principles in whole or part? (check all that apply)

Q29-1 Object oriented methodologies

Q29-2 Model based Methodologies

Q29-3 Agile methodologies

What is the reliability experience of projects which used “reverse engineering”.
Goal: To determine if the perception of the reliability of reverse engineering projects
is favorable

Q30 Have you been involved in one or more projects where Reverse Engineering
was used (e.g. design specifications from code)?

 If your response is 'yes' please answer the following question .

Q31
In you experience, do projects that use Reverse Engineering typically have

more problems than those that do not use Reverse Engineering (select one from
the response column)

Where and what type of “reverse engineering” is being used?
Goal: To determine what type of reverse engineering is being used and for what
artifacts.

Q32

Have you used reverse engineering on one of your projects that have been
approved,
or been proposed for approval, under either type certification process,
supplemental type certification process or TSO?
Please consider project while responding to questions Q16-n.

If your response was Yes, please answer the following questions for one of those
projects (select all that apply).

Q33 Have you performed Reverse Engineering from Source code or Object code?

Q34
Have you developed high level software requirements using either source

code, object code, machine code, design representations, or architectural
representations?

Q35 Have you performed Reverse Engineering for COTS products that lack DO-
178B artifacts needed for certification approval?

Q36 Have your performed Reverse Engineering on Software from previous
projects where DO-178B artifacts were incomplete?

Q37
Have you performed Reverse Engineering to supplement representations

(e.g. requirements, design, architecture, etc.) that are incomplete, incorrect, or
out-of-date?

B-7

Q38

Do you use an iterative life cycle where code is produced first or from draft
versions of the software requirements and then the various representations are
refined during various iterations of the process? (e.g. Spiral Development
Model, Rapid Prototyping)?

What tools are being used?
Goal: to determine the pervasiveness of tool use to augment the reverse engineering
process

Type of tools being used

Q39 Developers: Have you been involved in one or more projects where Reverse
Engineering was used (e.g. design specifications from code)?

 If your response is 'yes' please answer the following questions

Q40
Do you use any tools that analyze the source code and then produce

representations that can be used either for creating higher level representations
or can be used as the higher level representations?

Q41
Do you use any tools that analyze the object or machine code and then

produce representations that can be used either for creating higher level
representations or can be used as the higher level representations?

Q42 Do you use any tools that provide information about the behavior of the
software such as execution simulators?

Q43 Do you use any tools to assist in the configuration and verification of reverse
engineered representations?

General opinions and anecdotes.
Goal: to provide respondent an opportunity to add information that may be useful to the
survey, in addition to the above questions.

Q44 Please provide any additional comments on Reverse Engineering you feel are
relevant to this survey.

Re
sp
on
se

B-8

Table B-3 Reverse Engineering using DO-254

Reverse Engineering Survey (for DO-254)

Q ID Question
Background Information

Q1 Do you develop Programs for programmable hardware devices is
aeronautical systems?

Q2 Do you develop hardware for aeronautical systems?

Q3 How many years experience have you had in the following areas: (Type a number
rounded to closest number of years - in the range 0.. 50)

Q3-1
Developing system specification for the avionics combination of hardware

and software or for a hosted function (e.g. requirements for a Navigation
Receiver)

Q3-2
Developing program high-level requirements (HLR) for the desired behavior

of the programmable device product (e.g. HLR and other high level
representations...)

Q3-3
Developing design specifications that will be used by programmers to

produce program source (e.g. LLR/architecture, transition diagrams,
collaboration diagrams, sequence diagrams, ..)

Q3-4 Developing program code in a programming language such as Verilog,
VHDL, RTL, etc.

Q3-5
Leading a team to develop system specifications for the avionics

combination of hardware and software or for a hosted function (e.g.
requirements for a Navigation Receiver)

Q3-6
Leading a team to develop program high-level requirements (HLR) for the

desired behavior of the software product (e.g. HLR and other high level
representations….)

Q3-7
Leading a team to develop design specifications that will be used by

programmers to produce program source (e.g. LLR/architecture, transition
diagrams, collaboration diagrams, sequence diagrams,..)

Q3-8 Leading a team to develop program source in a programming language such
as Verilog, VHDL, RTL, etc.

Q3-9 Certification authority approving/reviewing programs for compliance to DO-
254

Q3-10 DER/Auditor approving/reviewing programs for compliance to DO-254.

Q4 What is your current role? (select all that apply) - Please select a Main Role for your
responses to subsequent questions.

Q4-1
Developing system specification for the avionics combination of hardware

and software or for a function on a programmable device (e.g. requirements for
a specific databus)

Q4-2 Developing program high-level requirements (HLR) for the desired behavior
of the programmable device (e.g. HLR and other high level representations.)

B-9

Q4-3
Developing design specifications that will be used by programmers to

produce program source(e.g. LLR/architecture, transition diagrams,
collaboration diagrams, sequence diagrams, …)

Q4-4 Developing program source in a programming language such as Verilog,
VHDL, RTL, etc.

Q4-5
Leading a team to develop system specification for the avionics combination

of hardware and software or for a hosted function (e.g. requirements for a
Navigation Receiver)

Q4-6
Leading a team to develop program high-level requirements (HLR) for the

desired behavior of the programmable device (e.g. HLR and other high level
representation...)

Q4-7
Leading a team to develop design specifications that will be used by

programmers to produce program source (e.g. LLR/architecture, transition
diagrams, collaboration diagrams, sequence diagrams, …..)

Q4-8 Leading a team to develop program source in a programming language such
as Verilog, VHDL, RTL, etc.

Q4-9 Certification authority approving/review programs for compliance to DO-
254

Q4-10 DER/Auditor approving/reviewing programs for compliance to DO-254.

Q5
What size of project teams have you been involved in? This includes of all of the
people needed to produce the program for an aircraft or aircraft related function?

(select all that apply)
Q5-1 1-5

Q5-2 6-10

Q5-3 11-20

Q5-4 21-50

Q5-5 over 50

Q6 For the projects you have been involved, in please select the levels of program data
where Reverse Engineering was used(select all that apply)

Q6-1 Level A

Q6-2 Level B

Q6-3 Level C

Q6-4 Level D

Q7 What type of aircraft or related systems are associated with the product lines you
work on: (select all that apply)

Q7-1 Ground Based aviation systems

Q7-2 transport aircraft (Part 25)

Q7-3 regional aircraft (Part 25)

B-10

Q7-4 business aircraft (Part 91)

Q7-5 general aviation aircraft (Part 23)

Q7-6 Rotorcraft

Q7-7 unmanned air vehicles

Q7-8 military transport aircraft

Q7-9 other military aircraft

Q7-10 other, [please specify] e.g. engines.

Q7-11 not applicable

Level of experience

Q8 What percentage of the aircraft projects you work on receive a TSO
Authorization?

Q9

Which of the following best describes your own level of experience with
developing or approving programs in compliance with DO-254, either for
airborne or ground-based systems? (select one and use this for subsequent
questions)

Understanding of reverse engineering terminology

Goal: To establish what terminology is being used in industry.

Q10 There are several interpretations of Reverse Engineering in Industry, which of the
following statements would you consider true: (select all that apply)

Q10-1 Starting with only the program and no other material and producing all the
other life cycle documentation

Q10-2 A third party receives requirements, design, and program documentation and
performs verification to create the verification records

Q10-3
System or program high-level requirements are used to create program in an

informal manner to obtain advance visibility of issues and then the other
documentation is created to fill in the gaps and verified

Q10-4 The program is reviewed as means to improve the design and requirements

Q10-5 Starting with program and some documentation, create all required
documentation, and perform verification to create verification records

Q10-6 Others
Determination of certification authority/DER acceptance of the reverse engineering
process

Goal: to determine the certification experience of people using reverse engineering

Q11
Developers: Have you been involved in a project which used reverse

engineering ? Please consider a specific project in response to questions Q12
to Q20

 If your response is 'yes' please answer the following questions for one of those

B-11

projects: (select all that apply)

Q12 What was the Level of the program?

Q13 Was the approach described in the PHAC?

Q14
Was any position paper on reverse engineering referenced by either the

certification authority or by the developer as a means of determining what
issues need to be addressed?

Q15
Once the certification authority/DER was notified that this process was

being used, did they require interpretations, constraints or additional lifecycle
data to those described in the DO-254 document?

Q16 Was the project approved using the process described above? (Q13, Q14, or
Q15)

Q17 Did you have access to Domain Experts, while performing reverse
engineering?

Q18 Was the use of Reverse Engineering techniques rejected?

Q19
Would you say the written FAA policy and guidance is ample, barely

sufficient, or insufficient in providing you with the information needed to see
approval of Reverse Engineering Projects.

Q20 Overall how satisfied are you with the FAA’s approach to granting approvals
for the project

Q21 Questions Q22 to Q27 only apply to authority/DER responders in Q4-9, Q4-
10?

 If your response is 'yes' please answer the following questions: (select all that apply)

Q22 If the developer can provide evidence that just the objectives of DO-254 are
satisfied and no additional information is provided, have you granted approval?

Q23 Have you used any position paper on reverse engineering to establish the
issues with reverse engineering that need to be addressed?

Q24 Have you required modifications or additions to the plans (DP, HVP,
PAP,…) or the PHAC to accommodate Reverse Engineering?

Q25 Do you reject any process that uses Reverse Engineering to demonstrate
satisfaction of objectives of DO-254?

Q26 What percentage of projects using the approach specified above do you
reject? (a rough indication is sufficient)

Q27 How many projects using the approach specified above have you rejected?

How much reverse engineering is occurring

Goal: To find out what proportion of the projects are using some form of reverse
engineering

B-12

Q28 Is reverse Engineering more prevalent during the development of specific lifecycle
artifacts? Only rough estimates are requested.

Q28-1 What percentage of your HLRs are developed from Design (LLRs)?

Q28-2 What percentage of your LLRs are developed from Code?

Q28-3 What percentage of your program is developed from the binary
representation?

Q28-4 What percentage of your HLRs are developed from program?

Q29 What type of development methodologies have you used with reverse engineering
principles in whole or part? (check all that apply)

Q29-1 Model based Methodologies

Q29-2 Agile methodologies
What is the reliability experience of projects which used “reverse engineering”.
Goal: To determine if the perception of the reliability of reverse engineering projects is
favorable

Q30 Have you been involved in one or more projects where Reverse Engineering
was used (e.g. design specifications from code)?

 If your response is 'yes' please answer the following question .

Q31
In you experience, do projects that use Reverse Engineering typically have

more problems than those that do not use Reverse Engineering (select one from
the response column)

Where and what type of “reverse engineering” is being used?
Goal: To determine what type of reverse engineering is being used and for what
artifacts.

Q32

Have you used reverse engineering on one of your projects that have been
approved,
or been proposed for approval, under either type certification process,
supplemental type certification process or TSO?
Please consider project while responding to questions Q16-n.

 If your response was Yes, please answer the following questions for one of those
projects (select all that apply).

Q33 Have you performed Reverse Engineering from program source or program
binary representation?

Q34
Have you developed high level software requirements using either program

source, program binary code, design representations, or architectural
representations?

Q35 Have you performed Reverse Engineering for COTS products that lack DO-
254 artifacts needed for certification approval?

B-13

Q36 Have your performed Reverse Engineering on Programs from previous
projects where DO-254 artifacts were incomplete?

Q37
Have you performed Reverse Engineering to supplement representations

(e.g. requirements, design, architecture, etc.) that are incomplete, incorrect, or
out-of-date?

Q38

Do you use an iterative life cycle where Program code is produced first or
from draft versions of the program requirements and then the various
representations are refined during various iterations of the process? (e.g. Spiral
Development Model, Rapid Prototyping)?

What tools are being used?
Goal: to determine the pervasiveness of tool use to augment the reverse engineering
process

Type of tools being used

Q39 Developers: Have you been involved in one or more projects where Reverse
Engineering was used (e.g. design specifications from program code)?

 If your response is 'yes' please answer the following questions

Q40
Do you use any tools that analyze the program code and then produce

representations that can be used either for creating higher level representations
or can be used as the higher level representations?

Q41
Do you use any tools that analyze the binary code and then produce

representations that can be used either for creating higher level representations
or can be used as the higher level representations?

Q42 Do you use any tools that provide information about the behavior of the
program such as execution simulators?

Q43 Do you use any tools to assist in the configuration and verification of reverse
engineered representations?

General opinions and anecdotes.
Goal: to provide respondent an opportunity to add information that may be useful to the
survey, in addition to the above questions.

Q44 Please provide any additional comments on Reverse Engineering you feel
are relevant to this survey.

B-14

Table B-4 Use of the survey spreadsheet and Survey Glossary

How to use
The spread sheet is being used to gather your responses so that
they are uniform and can be processed automatically. Please
click on the cell and select your response as appropriate.

Color coding A white response cell means that no value has been provided, and
a value is still requested.

Loss of Formatting.

While color was added to make the completion of the survey
easier, some of the formatting does not work well with older
versions of Excel. This should only affect the colors and not the
data itself.

Error message when
closing

An error message may be displayed when closing the file
claiming potential loss of formatting. Please close the file (we
don't mind losing some formatting, the data is important)

 Defined terms Defined terms are bolded in the survey text.
CAST-18 Certification Authority Software Team, Position Paper - 18,

Reverse Engineering in Certification Projects.
DER Designated Engineering Representative
TSO Authorization Technical Standard Orders Authorization
PSAC Plan for Software Aspects of Certification
PHAC Plan for Hardware Aspects of Certification
HLR High-Level Requirements
LLR Low-Level Requirements
SDP Software Development Plan
SVP Software Verification Plan
SQAP Software Quality Assurance Plan
DP Development Plan
HVP Hardware Verification Plan
QAP Quality Assurance Plan
PAP Process Assurance Plan

B-15

APPENDIX C—REVERSE ENGINEERING SURVEY RESULTS

C-1 SURVEY RESPONDENTS

This analysis captured many facets of the reverse engineering (RE) research. The RE survey was
used to analyze the respondents, their work, and their attitudes to RE. The survey captured
opinions from certification authorities and designated engineering representatives (DERs), as
well as practitioners or managers of the development of aviation-based software at various
software levels. The approach and attitudes to certification were probed, especially in the context
of RE.

The DO-178B [C-1] RE survey was distributed in July 2010.

The surveys were sent to several groups and lists. Table C-1 shows the distribution of the RE
survey.

Table C-1. Distribution of the RE Survey

LinkedIn Groups
Number of Surveys

Sent
DO-178B – Standard for safety-critical software 660
DO-178b’ists 1120
Safety-critical professionals 930
DO-254 43
DO-178B and DO-254 Programmers Group 162

E-mail Lists
Number of Surveys

Sent
Verocel internal list 380
FAA list 400
SC-205 list Approx. 300
Total DO-178B potential survey candidates 3995

It should be noted that there is a large potential overlap; an individual could be on several or all
eight lists.

The objective was to reach certification practitioners, DERs, and developers whose opinions are
based on experience and knowledge of the research topic being addressed. Analysis of the results
indicates that a high level of experience with certification issues was represented by the certifiers
and their representatives, as well as developers. While the sample over the entire industry may be
small, the response by senior participants is appreciated.

The surveys were anonymous when presented for analysis, and the data are presented on figures
C-1 through C-19.

There are many more practitioners in industry than certification authorities and DERs. It may
appear that the industry was under-represented, but the expectation is that the mailing lists used
from the Federal Aviation Administration (FAA) and other sources had a higher proportion of

C-1

certification authorities and DERs than would have been expected from a random population of
people involved with the DO-178B based industry. The mix is still considered fair and provides a
good cross section of people whose opinions were sought. Figures C-1, and C-2 provide a cross
section of the respondents and their average experience levels.

Figure C-1. Survey respondents

C-2

Figure C-2. Average experience level of respondents

On average, the respondents had much more experience as practitioners than as managers. The
respondent’s experience for the first four questions is approximately 4 years less than their
experience for the last four questions. This was not unexpected; managers often have a
development role, especially on smaller projects.

The average experience level of the respondents confirms that the opinions were submitted by
people whose opinions should be valued.

C-2. ANALYSIS OF PROJECTS AND RE

Figure C-3 describes the team sizes for projects and figure B-4 questions the use of RE at
different software levels.

Years of Experience

Av
er

ag
e

Ex
pe

rie
nc

e
Le

ve
l o

f R
es

po
nd

en
ts

C-3

Figure C-3. Project team size

The question asked was “What size of project teams have you been involved in? This includes all
the people needed to produce software for an aircraft or aircraft-related function (select all that
apply).

The count is the numbers of respondents that responded “yes.” The high number of projects with
team sizes greater than 21 is unexpected. After reconsidering, the question may have been
misinterpreted by the respondents because it was not clear whether the project team consisted of
the entire team, including system, hardware, and software engineers, or if they were to include
software only, as this survey was software related. Taking the ranges and number of respondents
into account and assuming that the largest project was not greater than 100, the average project
size was 15.

Figure C-4 shows the number of projects that were found at the first four software levels (i.e.,
Levels A, B, C, and D).

The levels for the projects were unexpected; the general impression was that there would be a lot
fewer Level A projects than Level B and C projects. Further review of the data showed that
many people worked on more than one project. Of the people who worked on Level A, 28%
worked on Level A only and 59% worked on Levels A and B. Of the people who worked on
Level B, 57% worked on Levels B and C. Note that the figure does not show how many projects
were being worked on, but a “Yes” is scored even if there is only one project worked on by an
engineer at a specific level. The figure indicates the use of RE at the various levels and not the
number of projects at each of the levels that use RE.

C-4

Figure C-4. RE at different software levels

There are fewer lifecycle data developed at Level D, so it is quite plausible that less RE would be
performed and source code would not be used to generate requirements because this introduces
what may be unnecessary additional detail.

The survey inquired about the types of aircraft and related systems on which the respondents
worked. This is summarized in figure C-5.

The survey respondents were predominantly from the commercial areas, (Parts, 23, 91, and 25).
The military and rotorcraft systems were well represented. Ground-based aviation systems were
a welcome addition, as were the engine certification. The surprise was the inclusion of unmanned
aircraft systems (UAS). The expectation was that while UAS does not yet have a formal
certification process, many DO-178B practitioners were involved with UAS, and DO-178B
artifacts were developed, although not mandated.

C-5

Figure C-5. Type of aircraft or related systems

Figure C-6 show the responses to the question, “How many projects received Technical Standard
Order (TSO)authorizations?”

What type of aircraft or related systems are associated with the
product lines you work on?

C-6

Figure C-6. TSO authorization

Some received 1-50 TSO Authorizations and some received 51-100. The figure shows that the
majority of the projects (60%) receive TSO authorizations.

Series1, 0%, 29, 40%

Series1, 1-50%, 17,
24%

Series1, 51-100%, 26,
36%

Percentage of the aircraft projects you work on receive a TSO
Authorization

No TSO Authorizations

1-50 TSO Authorizations

51-100 TSO Authorizations

C-7

Figure C-7 shows the level of experience with approval of certifications. The level of
respondents’ experience with projects that have been approved was high. Two thirds of them had
between 6 and 50 project approvals. Only 1% of the projects were not approved.

Figure C-7. Projects approved

Series1, None, 1, 1%
Series1, First, 2, 3%

Series1, "1-5", 21,
30%

Series1, "6-20", 32,
46%

Series1, "21-50", 14,
20%

Which describes your own level of experience.
Projects that have been approved.

C-8

Figure C-8 explores the interpretations of RE in industry.

RE, as perceived by the respondents, aligns closely with the proposed definition. Most of the
respondents believe that using source code as a starting point for development of other
development-related artifacts (requirements and design) constitutes RE.

Figure C-8. Interpretations of RE

Reviewing source code to improve the design and requirements was not considered RE,
presumably because review is a verification activity and RE is a development activity. If
requirements are used to develop source code, or requirements, design, and source code are
provided to a third party and then verification processes are used, this is not considered RE, with
the exception of a few respondents. The respondents were reasonably unanimous in their views
and interpretations of RE.

C-3. POLICY AND INTERPRETATIONS

Figure C-9 shows the responses to the question “Would you say the written FAA policy and
guidance is ample, barely sufficient, or insufficient in providing you with the information needed
to see approval of RE Projects?”

There are several interpretations of Reverse Engineering in Industry,
which of the following statements would you consider true: (select all

that apply)

C-9

Figure C-9. FAA policy for RE

The question was asked of the developers. Their responses were polarized; either ample or
insufficient. There were 16 responses who claimed the policy and guidance was insufficient, and
there were 15 respondents who answered that cert authority and DERs required interpretations,
constraints, or additional life cycle data (question Q15 in figure C-12). This lines up very closely.

C-10

Figure C-10 shows how satisfied the respondents were with the FAA’s approach to granting
approval for RE projects.

This figure shows a strong bias to the approval process used by the FAA. The approval
mechanisms appear popular, but the interpretations of RE are questioned.

Figure C-10. The FAA’s approach to granting approvals

Overall how satisfied are you with the FAA's approach to
granting approvals for the project

C-11

Figure C-11 shows the Cert Authority/DER experience of RE projects and figure C-12 shows the
Developer’s experience of Cert Authorities approval of RE projects.

Responses from the cert authorities and DER involved in RE projects indicate that most projects
were approved (16% rejected). The percentage of rejections is skewed by one outlier result.
While most respondents answered “none,” some respondents rejected very few, and 1 respondent
rejected 12 projects that used RE. This particular result is being discarded; there is a strong
likelihood that this was a data entry error.

Figure C-11. Cert authority/DER attitude to approval

When the cert authority and DER were asked if they would accept a reverse engineered project if
it satisfied all the requirements of DO-178B, 53% replied “yes.” A similar question asked of the
developers ,but reversed, (“Was the project approved using the process described by questions
13, 14, and 15?”), yielded more than 70% acceptance. See the third question of figure C-12.

The cert authorities and DERs were twice as likely to use the Certification Authorities Software
Team (CAST)-18 [C-2] Position Paper as the developers were. Documenting of RE processes in
the Plan for Software Aspects of Certification (PSAC) was high in the cert authority, DER, and
developer responses.

What percentage of projects using the approach specified
above do you reject (Cert Authority /DER's)

C-12

Figure C-12. Developers experience of RE approval

Only 4% of the respondents claimed that the use of RE was rejected by the Certification
Authorities. This correlates with the responses in figure C-11. Most projects had access to
domain experts while performing RE. Most projects documented the RE process in the PSAC.
The CAST position paper was used in approximately one-third of the projects. For 38% of the
projects, the certification authority required interpretations, constraints, or additional lifecycle
data beyond those described in DO-178B.

This is a troubling response because the developers are claiming that the certification authority
was requesting additional work based on own their interpretation of DO-178B. Guidance should
be clear and should not require special interpretations. This means that either the developers

(Q-13) Was the
approach…

C-13

produced certification data that were not acceptable or the Cert Authority/DERs did not accept
what was produced and required more work.

On a positive note, the developers and Cert Authority/DERs agree that most of the projects are
accepted.

Figure C-13 shows the engineers’ response to the following question: In your experience, do
projects that use Reverse Engineering typically have more problems than those that do not use
Reverse Engineering?

Unfortunately, the question was not precise enough. The intent of the question was to explore the
efficiency of the RE processes in finding software errors. After analyzing the results, it is unclear
whether the question is related to the RE processes themselves or the software to which RE is
being applied.

Figure C-13. Comparison of number of problems

The results show that whichever interpretation is assumed, the “same number of problems”
category has the higher weight when compared to the combination of the other two categories
(i.e., the “fewer number” category and the “greater number category”). The “same number of
problems” category showed 27 responses (more than 57% of the total of 47 responses), whereas

Do projects that use Reverse Engineering typically have more
problems than those that do not use Reverse Engineering -

(Engineers)

About the same…

C-14

the combination of the “greater number” category (i.e., 13 responses) and the “fewer number”
category (i.e., 7 responses) is less than 43% (i.e., 20 ÷ 47=42.5%).

C-4. DEVELOPMENT AND CERTIFICATION

Figure C-14 shows the relative percentage of Levels A through D in which respondents were
involved.

Figure C-14. Certification experience on projects

Respondents were asked to consider a specific project when responding to subsequent questions.
Each respondent could select the one project from different levels. The proportions of the levels
shown in figure C-14 do not represent the number of certifications by level, but do give a basis
for considering the responses.

Series1, Level A, 17,
40%

Series1, Level B, 14,
33%

Series1, Level C, 4,
10%

Series1, Level D, 7,
17%

Developers: Have you been involved in a project which used reverse engineering ?

C-15

Figure C-15 shows the responses to the question asked of engineers (“Have you ever used RE on
one of your projects that have been approved, or been proposed for approval, under either type
certification process, supplemental type certification process, or TSO?”).

Figure C-15 shows that two thirds of the respondents have used RE in their projects

Figure C-15. Engineers—Have you used RE?

Approved, Yes, 44,
68%

Approved, No, 21,
32%

Used reverse engineering on one of your projects that have been
approved, or been proposed for approval, under either type

certification process, supplemental type certification process or
TSO - Engineers

C-16

Figure C-16 shows how RE was performed by the respondents on their projects.

The use of RE is prevalent in the industry. Practitioners were asked about the type of RE used.

Figure C-16. Type of RE Used

Performing RE from source code or object code was reported by 91% of the respondents. This
corresponds to the responses to the questions on processes used shown in figure C-17, which
shows that 18% of the low-level requirement (LLRs) are not developed from source code,
meaning that 82% are. The fact that 70% of the respondents develop high-level requirement
(HLRs) using an RE approach was unexpected. The numbers correspond to those shown in
figure C-17, for which 60% of the respondents said they were RE HLRs from source code and
61% from design LLRs.

An iterative process (which develops code from draft versions of the requirements, followed by
subsequent refinement) was used by 83% of the respondents.

Per…

C-17

Between 67% and 80% of the respondents used RE to supplement information developed, either
on new projects or on previous projects that were being adapted.

Only 50% of the respondents used RE on commercial off-the-shelf (COTS) products. This
number is lower than the developed software, but this could be because COTS manufacturers
sometimes provide certification packages for the software, which represents a part of the
embedded software used in aviation-based systems, and not all of the respondents may be
involved with the COTS components.

Figure C-17 shows the response to the questions which probed how much RE was occurring and
during which development phases. The respondents were asked for simple categorization; none,
less than average, and more than average.

The development of HLRs from source code and design specifications was almost identical, and
approximately 60% of the respondents admitted to some level of RE of HLRs. This is
unexpectedly high, because extracting the black-box behavior to the external interfaces of the
software by analyzing the software is difficult and expensive.

C-18

Figure C-17. RE processes used

Unexpectedly, 18% of the respondents claimed that they did not develop LLRs from source
code. A third of the respondents claimed that more than 50% of their LLRs were developed from
source code.

As expected, 90% of the respondents claimed that they did not develop source code from
machine code. A small number of respondents developed source code from machine code. The
most likely explanation is that they may have obtained software libraries and hardware
interfacing code and converted this to Assembly Level, which would then be treated as source
code. The question was not precise enough to validate this information, so it remains an
assumption.

"0%", Percentage of
your HLRs are

developed from
Design (LLRs), 25

"0%", Percentage of
your LLRs are

developed from
Code, 11

"0%", Percentage of
your Source code is

developed from
machine code, 55

"0%", Percentage of
your HLRs are

developed from
source code, 25

"1-50%, Percentage
of your HLRs are
developed from
Design (LLRs), 34

"1-50%, Percentage
of your LLRs are
developed from

Code, 31

"1-50%, Percentage
of your Source code
is developed from
machine code, 4

"1-50%, Percentage
of your HLRs are
developed from
source code, 33

"51-100%",
Percentage of your
HLRs are developed

from Design (LLRs), 5

"51-100%",
Percentage of your
LLRs are developed

from Code, 22

"51-100%",
Percentage of your

Source code is
developed from
machine code, 2

"51-100%",
Percentage of your
HLRs are developed
from source code, 5

Reverse Engineering Processes used/Not used

C-19

Figure C-18 indicates what percentage of the respondents answered “yes” to the question on use
of RE and other technologies.

Figure C-18. Use of other technologies

Note that the Agile development question refers to the development process only. Agile
engineering is characterized by evolving requirements, design, implementation, and testing
incrementally through the software evolution. This process is used successfully when the system
requirements are not firm and when the behavior of the software reflects directly in the behavior
of the system. The end user can then observe the behavior and help with the refinement of
system requirements. This process finds system level errors early; requirements, design and
source code, and tests are modified together. In practice, it is often the case that the requirements
process and testing become less formal and full traceability is not managed well. As a result, RE
plays a key role in recovering the information that did not evolve with the software.

Of those that used an RE, 33% used model-based methodologies and 33% used object-oriented
methodologies. These were separate questions and the overlap where they used both was not
asked.

There was a low response to the question on use of configuration tools, as shown in figure C-19.

Use of other technologies with Reverse Engineering

C-20

Figure C-19. Use of tools while RE

The expectation was that most projects use some form of configuration management system to
maintain baselines. It may be that the respondents did not consider them to be tools used
specifically for RE; therefore, the response is lower than expected.

Execution simulators are often used when target hardware is not available or when it is easier to
generate data using a simulator instead of doing so manually.

The use of tools to analyze object code was small. Web searches for RE tools provide a large
number of papers, research materials, and analyses of tools used to re-engineer information from
object or machine code. This is a different type of RE in that it focuses on design recovery for
maintenance purposes or for the use of code path recovery typically used to find the location of
the code that checks license keys. There is very little material on the RE of source code
requirements.

There are tools that provide call graphs, document set and use for data values, and document
parameter use. These tools are used to help document the code and capture higher level
representations. These tools are an accurate labor-saving mechanism; it is more convenient to
extract such information than to develop it manually. Forty-five percent of the respondents said
they use such tools.

Engineers (Those that have used Reverse Engineering) - Do
You?

U…

C-21

REFERENCES

C-1. RTCA/00-178B, “Software Considerations in Airborne Systems and Equipment
Certification,” December 1, 1992.

C-2. Certification Authorities Software Team (CAST) Position Paper 18, “Reverse

Engineering in Certification Projects” June 2003.
http://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/cast/cast_papers/media/cast-18.pdf.

C-22

APPENDIX D—ANALYSIS OF ISSUES AND THEIR POTENTIAL MITIGATIONS

A number of issues were identified that could be potentially created by the reverse engineering
(RE) process. These issues were collected from Certification Authorities Software Team (CAST)
position papers, literature, the survey, and the authors’ experience, and are summarized below
along with how they can be mitigated by following the principles provided in this report.

Numbers other than CAST position paper numbers are used to make reference and discussion
easier.

For the first three issues, the partial acrostic and memory aid SUNECO may be used to help the
certification engineer to form a question that includes one of the three adjectives that describe the
functionality in question (i.e., is it SUfficent, NEcessary, COrrect?)

D-1. MISSING FUNCTIONALITY IN THE MORE ABSTRACT LAYER

D-1.1 ISSUE DESCRIPTION

The less abstract layer (LAL) may not contain the entire solution to a system where it is used.
For example, there are functions missing from the LAL that should be in the more abstract layer
(MAL).

D-1.2 POTENTIAL MITIGATIONS

Going from the bottom up does not guarantee that all of the desired features at the system level
will exist. Some means of introducing real system intent and establishing completeness of the
reverse engineered perceived system intent is needed.

There may be several abstraction levels that are ultimately represented by source code and the
final operational system. The traditional expectation is that with a formal waterfall model, an
engineer is given an abstraction layer and will translate this to an LAL using only information
provided by the MAL. In practice, engineers often refine the translation by adding detail, some
of which is necessary and some of which is unnecessary functionality. The MAL may not specify
certain robustness checks, yet by coding conventions, tradition, or experience constructs that
perform null pointer checks, index boundary checks or consistency checks may be added to
improve the robustness of the code.

It should be a policy that when RE is performed, all robustness checks must be called out as low-
level requirements (LLRs). This would ensure that they are considered in the testing process, the
source to LLR reviews, and propagated in line with DO-178B [D-1] objectives.

There are several reasons why there may be missing functionality as represented in the source
code:

• The source code is incomplete through omission. During the software development
process, some combinations of parameters may be coded and some level of testing
performed to check the implemented functionality. The functionality may be incomplete,
but the tests are performed on the parts that are already written. The engineer may fully

D-1

expect to return to the coding process to complete the functionality once a level of
confidence is built up with the code written to that point. Well-organized software
engineers often annotate the cases that have not been completed as null code statements
with appropriate comments. This draws attention to the incomplete behavior. This may
not always be the case, and it may be difficult to detect if the required functionality has
been fully implemented or if the implementation has not been fully developed on the
required code paths.

• The interfaces may have changed after the implementation of the source code that uses
them. An example of this may be when a list in an enumeration type was first written as
[RED, GREEN] and the code written to respond to a variable of this type. If the
enumeration list is then changed to [RED, GREEN, AMBER] and the code is not
changed, then the response of the system is undefined when the value is AMBER. This
additional behavior is missing in the software, and an RE process that does not include
analysis of the interface specifications will result in incomplete LLRs. The inclusion of
incomplete LLRs may propagate up through the levels of abstraction and may end up
with an HLR that lacks the detail necessary to detect the missing functionality.

This is not a problem for the RE. We have an oracle in this case—the interface
specification. What if the system needs an AMBER (e.g., caution) and only warnings and
good indications are coded? The missing LLRs should be detected during the RE process
and added. A good subject matter expert (SME) would immediately recognize that the
system needs this extra functionality. So how would such a mitigation appear?

“The SME shall evaluate the reverse engineered functionality to ensure it
contains all of the functionality needed to perform the SME’s level view of
the system functions.”

However, there may be several levels of interface specifications. Some are provided at the
system level and would be understood by the SME. Other interfaces are local to the
implementation (e.g., header files in the C programming language), and the SME may not
understand the programming language and interfaces at that lower level (e.g., specifications of
internal data structure formats). If the data structure is used consistently with no assumptions on
the layout at the implementation level, then the checks of the interfaces may be performed at the
local level. For example, a data structure format could be used to represent a double-linked list
that holds a value at each list element. The record could contain the following components: Next,
Prev, and Value. Source code that used the Next and Prev components by name would not be
affected adversely if the record type was changed to Prev, Next, and Value. If some of the
software functions assumed that Next was the first component in the structure, then the software
could fail if the record type in the interface specification was changed.

This internal structure may not be visible at the level at which the system SME would notice.
The problem is the same whether forward engineering or RE is being performed. Interface
specifications are not typically reverse engineered; however, it is important that as RE uses
information flow from the LAL to the MAL, interface specifications may be used to produce
higher levels of abstraction and may result in descriptions of behavior that may not match the
system intent.

D-2

Assumptions may be made about the functionality of integrated components. For example, the
ALLOCATE function should return a location in heap memory, which contains zeros. There are
three ways to implement this:

1. The ALLOCATE function obtains the required memory area and sets the contents
to zero before returning a pointer to it.

2. When the heap memory is set to zero, the ALLOCATE function obtains heap
locations and de-allocations are not possible.

3. When the heap memory is set to zero, the ALLOCATE function obtains heap
locations and de-allocations cause the de-allocated memory to reset to zeros.

The implementation of the ALLOCATE function may assume implementation 2 or 3. In this
case, it would not contain the additional functionality to set the memory locations to zero. This
ALLOCATE functionality would be considered missing if the intended behavior was option 1
but the assumed behavior was 2 or 3.

In a more abstract way, this mitigation is stating that that there may be more or less functionality
in the LAL than expected in the MAL. Therefore, the question is whether or not the LAL
elements are SUfficient.

D-2. LACK OF ASSOCIATED BEHAVIORAL SPECIFICATIONS

D-2.1 ISSUE DESCRIPTION

If there are no associated behavioral specifications (e.g., system requirements or high-level
requirements (HLRs)), there may be many solutions for requirements from source code.

D-2.2 POTENTIAL MITIGATIONS

It is important to distinguish between real system intent vs. perceived system intent developed
using the RE processes.

Using RE, source code may be analyzed in an attempt to discover the intended behavior of the
system. For all but the simplest of systems, various assumptions will need to be made during this
process. If these assumptions are incorrect or inconsistent, the discovered intended behavior may
be incorrect or inconsistent. The RE approach is performed by engineers whose experiences,
knowledge, and skill levels influence the decisions they make. This may introduce some
variability in the statement of intended behavior that is inherited from the source code up through
the requirement levels. The variability of this intended behavior is reflected in system
requirements or HLRs when reverse engineered using this process.

If the system is sufficiently simple, then the source code representation may be a very close
mapping to the intended behavior. In this case, the abstractions level between source code and
intended system behavior is small, and few assumptions need to be made. This means that the
number of different interpretations is small and the system level requirements may be accurate.

D-3

More complex systems may have mappings that are not so obvious and more decisions need to
be made. The transformation levels between the different representations may be large, making
the transformation more error prone. The number of transformation levels may be increased by
expanding the number of abstraction levels. While this makes the individual transformations
simpler and, therefore, less error prone, there are more of them so the opportunity to make errors
increases.

As RE is a manual process (although one that may be supported by tools), the engineer’s
knowledge, experience, and skills will have a direct effect on the number of assumptions made
during the development of the information in the abstraction level. The lower the number of
assumptions, the more accurate the mapping from the less abstract layer (LAL) to the more
abstract layer (MAL).

While engineers familiar with the intent of the system may make assumptions that correct the
MAL in the presence of certain errors in the LAL without changing the LAL, they may restate
the intended behavior in the MAL after changing the LAL. The range of abstraction levels spans
the system requirements and HLRs to the source code. It may be that the systems engineers are
not skilled software engineers and the software engineers are not skilled system engineers. This
may result in assumptions and communication difficulties. This problem is not specific to RE
during the development process.

By restating the perceived intent in the MAL, the higher level of abstraction may contain less
detail. This means that the LAL may have more elements describing the intent. This may lead
one to question whether or not LAL elements are NEcessary.

D-3. ERRORS IN LAL MAY PROPAGATE TO MAL

D-3.1 ISSUE DESCRIPTION

The LAL may contain errors such that the RE would create erroneous descriptions for the MAL.

D-3.2 POTENTIAL MITIGATIONS

Follow an independent verification process that checks MAL descriptions against the LAL.

The LAL may contain errors that are synthesized in the MAL using an RE process. Conversely,
if a waterfall process was used, the errors may be inherited in the LAL from the MAL. The
presence or absence of errors is not the issue. The real question is if there is a different class of
error inserted by the RE process that would be less likely in the forward engineering process.

Certain classes of errors may be found during the RE process. If the error demonstrates
inconsistencies between the software constructs, then a buffer declared with boundaries from 0
through 9 can be found, and a loop that indexes from 1 through 10 is a software error that should
be found during the RE process. This problem should also be found during the verification
processes, especially during code review.

D-4

A straight translation without consideration to correctness with the expectation that subsequent
verification steps will find translation problems loses an opportunity to find errors. Part of this
process step should be a requirement that engineers are vigilant for possible faults in the LAL.

During the source coding and debugging process, engineers often used additional code to output
internal states that are not visible at the system-level boundaries. Typically, print functions are
inserted to provide a history of the execution states. To obtain specific values, additional
intermediate states may be added, which consolidate internal information. This debugging
technique is often controlled and special compiler directives are added so that this code can be
conditionally included or excluded from the operational code. As this is a human process,
mistakes can be made and the resulting trace code may be left in. Function calls to reporting
routines are easy to notice, but internal data collection may not be so obvious. This may result in
additional code, which should be treated as dead code. If RE is used, then this code may have
LLRs and, thus, HLDs written for it. Subsequent verification steps will review the requirements
and the code against the requirements, followed by requirements-based tests that will verify the
code against the requirements. The dead code will no longer appear as dead code. Fortunately,
code that is inserted to record internal state does not change it; otherwise, it would defeat its
purpose. This should be found and addressed in the verification processes. These trace calls and
their corresponding data manipulations are usually simple and are often accompanied by source
code comments. Note that this is something that should be recommended for the coding process,
especially if RE is used—trace code must be surrounded by compiler conditional directives or
comments so they are noticed as extraneous behavior that should be removed.

In a more abstract way, this is stating that there may be errors in the LAL and MAL translation;
A question to raise would be whether the translation between the LAL and the MAL is COrrect.

Note that this correctness does not depend on the direction; it is required whether forward or
backward translation was used.

Self-checking correctness is easier to notice because it is manifested through the lack of
consistency in behavior. Code reviews should be used and should find issues, such as indexing
errors, deadlock problems (in which resources are locked out of sequence and progress is held up
until resources are released), overflow and underflow arithmetic errors, and loop-termination
errors.

The key point is that errors can enter the system and processes should be formulated to detect
these errors with the appropriate level of confidence. In some cases, the mitigations of these
errors are independent of direction and some are unique to RE (e.g., the importance of
identifying a qualified subject matter expert (SME)).

D-4. LACKING GUIDANCE FOR CERTIFICATION AUTHORITIES

D-4.1 ISSUE DESCRIPTION

The certification authorities do not currently have guidance that would allow a consistent
evaluation of RE projects. The absence of this RE guidance may result in overly conservative
interpretation and easily rejected applications.

D-5

D-4.2 POTENTIAL MITIGATIONS

The suggested guidance in an application needs to have the following attributes:

1. Addresses the issues raised in this application, including all concerns in currently
published regulatory material (e.g., citing specific CAST position papers).

2. Provides rationale.

3. Will result in acceptable levels of variation in its application.

4. Is acceptable and defined by the certification authority.

5. Can be used directly by certification authorities.

This guidance could be addressed through a short RE Job Aid that can be used when RE is called
out in a Plan for Software Aspects of Certification (PSAC). Even so, this approach will require
collaboration with the Federal Aviation Administration.

D-5. INADEQUATE PROCESS

D-5.1 ISSUE DESCRIPTION, CAST 18[9], SECTION 4.1SECTION 4.7

The RE process is not described well in the process documentation. For example, RE is used, but
only the forward process is controlled via plans. This may mean that the certification authorities
may not be aware of an RE approach before significant RE work has been completed

D-5.2 POTENTIAL MITIGATIONS

There is a need to distinguish between the development and verification steps.

If a company’s plans describe only the forward process, then an additional RE plan may be an
appropriate place to describe the specific RE steps to be taken on this project. The project should
not wait until the Software Accomplishment Summary (SAS) to describe the deviations, but
describe them up-front, and not require that the existing project plans be rewritten. An approach
may be to include a separate RE software plan (RESP) or have a separately identifiable part of
existing plans as the RESP. This approach would then be described in the PSAC or Plan for
Hardware Aspects of Certification (PHAC), which would introduce all life cycles used on the
project along with the plans that are designed to support them.

If the certification authorities see only the PSAC or PHAC, then it is essential that these
documents describe the RE process directly or indirectly in the process plans.

If the development plans do not describe the RE process (the developer fails to develop
standards, transition criteria, and verification criteria specific to the RE process) or if the
development plans are not followed and are addressed in the SAS, then the certification
authorities will not have visibility into the RE approach until late in the program.

D-6

A possible mitigation could be to repeat work using a RESP. The RESP need not contain the full
company process planning information, only the processes supporting RE. The steps that are not
changed still apply and can be referenced out.

D-6. WRONG LEVELS OF ABSTRACTION BETWEEN LEVELS

D-6.1 ISSUE DESCRIPTION CAST-18, SECTION 4.2, SECTION 4.5

The artifacts of RE cannot demonstrate the same level of technical and verification content as a
more traditional process. There may be insufficient abstraction between the different layers of
development; for example, where the HLRs are highly correlated in detail with the source code.

D-6.2 POTENTIAL MITIGATIONS

The difference in the abstraction levels of the MAL and the LAL should strike a balance between
the difference between each level of abstraction and the number of abstraction levels.

The MAL should provide a representation that specifies the intended behavior of the LAL:

1. A restatement of the intended behavior at the same or similar level using a different
notation is useful only for checking that the transformation was correct, not the intended
behavior.

2. If the abstraction level between the MAL and LAL is too large, there will be less
confidence that the process is repeatable with the same or equivalent results.

This issue also applies to forward engineering, but there may be a temptation for engineers to
develop LLRs from code that specify how the code works rather than the intended behavior. This
may then result in the difference between the abstraction level of the LLRs and the HLRs to be
too large.

D-7. LACK OF FAMILIARITY WITH RE PROCESSES

D-7.1 ISSUE DESCRIPTION CAST-18 SECTION. 4.2

The use of RE compromises the integrity claims that could be made from a traditional forward
software engineering approach.

D-7.2 POTENTIAL MITIGATIONS

Forward engineering requires a development process for which information is constructed based
on given information and a creative process that has been taught or learned through experience
and guidance. RE is not taught to the same extent as forward engineering at colleges and
universities.

It is important that engineers performing RE processes know and understand the intent, risks, and
potential errors that can result if the process is poorly executed. If a working code base is reverse
engineered, the fact that the code base is working could lead to a false sense of confidence that

D-7

the software is correct and may result in a less-thorough investigation or care in developing the
RE artifacts.

Additional training, work orders, mentoring, and oversight may be required to ensure that reverse
engineered information is valid.

D-8. UNSTABLE PRODUCT LEADS TO INTEGRITY ISSUES

D-8.1 ISSUE DESCRIPTION CAST-18, SECTION 3.0

The object being reverse engineered is not a stable product, does not have an acceptable
documented service history, and has not been developed to a standard that is comparable to DO-
178B, thereby having lower ability to demonstrate integrity assurance.

D-8.2 POTENTIAL MITIGATIONS

The integrity assurance should be demonstrated by the verification processes. An unstable
development process should be able to be demonstrated as acceptable, providing it is understood
and permitted (e.g., agile development will have many iterations during development). The
intended states of all the components should be known and understood.

If service history is used to obtain certification credit, then this should be addressed in guidance
specific to service history.

Stability of the product will be discovered during the RE process. If the product is unstable and
many changes to the code base are required, then the costs become very high. Developing
requirements to software that is being updated uses a lot of resources as work is repeated.
Through the spread of impact, the problem becomes larger and unmanageable. If the product is
unstable, then the RE processes should be stopped and informal debugging steps should be taken
before continuing the RE processes.

D-9. RE PROCESS IS NOT VIABLE

D-9.1 ISSUE DESCRIPTION CAST-18, SECTION 4.2

There is no justification of the RE process viability.

D-9.2 POTENTIAL MITIGATIONS

The viability has been demonstrated on a large number of projects. Of the 162 software survey
respondents, 63 reported that they had been involved in a project that used RE. The respondents
were experienced. Only one of the RE projects was not approved. There is a preponderance of
using RE in the industry, and most of this has satisfactory conclusions. The viability of RE has
been demonstrated.

D-8

D-10. ABSENCE OF SUBJECT MATER EXPERTISE

D-10.1 ISSUE DESCRIPTION CAST-18, SECTION 4.3, SECTION 4.4

There may be no or inadequate resources (e.g., SMEs, developers, or descriptive documentation)
available to establish a given LAL, which is the basis for design decision, the intent of
implementations, the intended problem space that the LAL was intended to solve, etc. This
would make it difficult to verify any MALs developed from the LAL.

D-10.2 POTENTIAL MITIGATIONS

It is necessary to have access to SMEs because a single individual is unlikely to have all the
required expertise. Typically, a number of SMEs will be used to ensure the necessary system
domain knowledge and software expertise, particularly if the system is complex. A requirement
is proposed that an organization identify such experts to the authorities.

D-11. AIRBORNE SYSTEM REQUIREMENTS CANNOT BE TRACED DOWN

D-11.1 ISSUE DESCRIPTION CAST-18, SECTION 4.5

Airborne system requirements cannot be correlated to the reverse engineered MAL (e.g., HLRs).

D-11.2 POTENTIAL MITIGATIONS

The correlation between system requirements and HLRs depends on how the requirements are
written at these two levels. Some of this correlation depends on the terminology used. For
example:

• System Requirement 25: Reverse thrust shall be inhibited if there is no Weight on
Wheels.

• High-Level Requirement HR1.7: Discrete REVERSE THRUST shall be set TRUE when
BIT 7 of ADDRESS X’2F33 is ZERO.

To a system engineer, the system requirement may make sense, but to a software engineer, there
have been a number of assumptions made that need to be resolved. In a forward engineering
process, the transition from the system requirement to the HLR would be a large one because the
following example would be needed:

• How is REVERSE THRUST represented? (Discrete voltage on a pin?)

• Is voltage level high indicated by TRUE or FALSE?

• Does TRUE represent INHIBITED?

• Is Weight on Wheels represented by a bit value that can be read directly from Direct

Access Memory?

D-9

• Does the bit set to zero represent Weight on Wheels?

• How quickly will the bit settings represent the real world conditions?

• Is there a possibility of a bounce?

The system requirements may be underspecified; therefore, the HLR developer would be forced
to request more details before the software could be written.

In an RE process, the fear is that the HLR developer could assume that the software is correct
because it appears to be working and simply documents what the code is doing. When
traceability between the system requirements and HLRs is established, assumptions could be
made that the requirements are correct and complete.

The HLR reviewer must not make the same mistake that the HLR developer made. Reviewers
should ask themselves if there is enough information in the system requirements and any other
documented specifications to correlate to the HLRs.

In a forward engineering development, the translation of system requirements to HLRs is
developed by a developer and reviewed by a verifier (i.e., information flows from the MAL to
the LAL during development, which is then checked by a reviewer). In a RE development, the
information flows from an even lower-level LAL to the LAL during development and the
information flow from the MAL to LAL is checked by a reviewer.

Developers using an RE process should be trained to ask the same questions when establishing
traceability between system requirements and HLRs, and should fail the HLR if the requirements
cannot be traced because information is missing or is incorrect.

D-12. TRACEABILITY GAPS

D-12.1 ISSUE DESCRIPTION CAST-18, SECTION 4.5

Forward and backward traceability is not fully established in RE projects. This could result in
traceability gaps. This can also make it difficult to determine whether specific functions at one
abstraction layer represent unwanted or undesirable functionality (e.g., dead code).

D-12.2 POTENTIAL MITIGATIONS

When using RE, the traceability links are part of the development process and are established
from the LAL to the MAL. The verification process should be independent and should confirm
the correctness of the MAL to the LAL.

Traceability records relationships between objects at different abstraction levels. If these
relationships are based on incorrect assumptions, then review of the objects should fail. The
reviews of the objects at the different abstraction levels should use information from the MAL
when checking the LAL.

D-10

The developer establishing the traceability should use the information from the LAL to establish
a traceability link to the MAL. The link is bidirectional and will be confirmed during subsequent
review processes.

The forward engineering process could also make assumptions, and information could be
missing when traceability is established. The verification process should find these traceability
problems.

If a large number of these traceability problems are found during the reviews, a deficiency in the
development process could be indicated, which results in the traceability being reviewed. The
development process would need to be corrected.

D-13. LACK OF CORRESPONDENCE BETWEEN LEVELS

D-13.1 ISSUE DESCRIPTION CAST-18, SECTION 4, 5

Employing RE concepts in conjunction with more-traditional approaches (e.g., forward
engineering) can result in MALs that do not correspond to LALs.

D-13.2 POTENTIAL MITIGATIONS

Lack of correspondence will be discovered during independent verification between the levels.

If the MALs do not correspond to the LALs, then this should be found during the review process.
If the problems are pervasive, this would indicate failures in the development processes and
would need to be corrected. This problem could occur during forward engineering, RE, or a
combination of both.

D-14. MISSING FUNCTIONALITY

D-14.1 ISSUE DESCRIPTION CAST-18, SECTION 4.5

The reverse engineered product may not contain all of the operational and safety functionality
required at the airplane system level. This may result in imprecise traceability between the
software engineered product artifacts and the system and safety requirements.

D-14.2 POTENTIAL MITIGATIONS

The absence of the operational and safety functionality should be found during the reviews of the
system requirements and HLRs.

Traceability is covered in Sections D-11, D-12, and D-13.

Correct traceability should be established by the developers. If this cannot be established, the
software developers should resolve this with the systems and safety engineers. Verification of the
traceability should confirm that the traceability is correct and complete.

D-11

D-15. DERIVED REQUIREMENTS MAY BE MISSED

D-15.1 ISSUE DESCRIPTION CAST-18, SECTION 4. 5

The existence of derived requirements may be the result of not knowing the purpose of a specific
element of an artifact that is an input to the RE process.

D-15.2 POTENTIAL MITIGATIONS

The derived requirements must be discovered and resolved.

A specific element may be inserted through an assumption that may be correct or incorrect. If an
assumption is correct but not documented, this is also a problem. At the lowest level that is
manually reviewed (source code), code fragments may be found that may be the result of coding,
design, or requirement errors. If an RE process is used, the code insertions may result in design
and requirements at the MAL that correspond to the code errors.

Some code insertions may be valid, even if they do not have corresponding requirements. For
example, an operating system function that expects a task pointer as a parameter may check to
verify that the object actually passed is a task object, and the user has not passed in a semaphore
or message object by mistake. Such checks verify consistency of the code and are robustness
checks. Other checks may be more subtle, and the effects of their outcomes may propagate to the
system interfaces by causing a system state change (like a reset).

Any artifact that is added at any level must have its behavior documented through a requirement.
The requirement may be traced to expected behavior at a MAL. If this cannot be accomplished,
the requirement must be documented and treated as derived in accordance with the requirements
of DO-178B.

Derived requirements may be the result of a forward engineering or RE process.

D-16. MISSING INTERFACES

D-16.1 ISSUE DESCRIPTION CAST-18, SECTION 4.6

There will be missing interface descriptions that result when MAL are reverse engineered from
LALs. These interfaces could be software-to-software interfaces, hardware-to-software
interfaces, hardware-to-hardware interfaces, or the more abstract function-to-system interfaces.
The missing interfaces could be the result of forward engineering, making assumptions, or RE
and not questioning assumptions.

D-16.2 POTENTIAL MITIGATIONS

If interface descriptions are missing, they must be added.

Information will be missing during any MAL to LAL review process. If such missing
information is pervasive, this will indicate a poor forward engineering or RE development
process.

D-12

D-17. MISSING INFORMATION

D-17.1 ISSUE DESCRIPTION CAST-18, SECTION 4.6

User guides and porting guides may not completely describe the functions and protocols
required.

D-17.2 POTENTIAL MITIGATIONS

Mitigations may happen during the forward engineering or RE process. The review process will
fail if information is missing.

D-18. PLANNING FOR RE

D-18.1 ISSUE DESCRIPTION CAST-18, SECTION 4.6

Certification authorities not involved early in the planning process for RE projects can result in
significant rework and the associated introduction of additional errors. This will be particularly
true if the product has inadequate requirements, design, traceability, and verification
documentation.

D-18.2 POTENTIAL MITIGATIONS

An RESP should be developed early or the development plan should address RE for the project
and be provided to the certification authorities for review along with the other software plans.

D-19. MULTIPLE STAKEHOLDERS IN RE PROJECTS

D-19.1 ISSUE DESCRIPTION CAST-18, SECTION 4.6

Using multiple stakeholders in RE projects can result in errors due to inadequate requirements,
design, traceability, verification documentation, communication gaps, configuration management
shortfalls, and quality assurance shortfalls.

D-19.2 POTENTIAL MITIGATIONS

The requirements for coordination of the stakeholders should be described in project
documentation and followed.

Using multiple stakeholders may have advantages in the development and certification of
software. However, errors can occur whether there are many or few stakeholders. The following
example criteria should be imposed on a multiple stakeholder project:

• The areas of responsibility must be clearly identified.

• The processes used must be coordinated.

D-13

• The configuration management between all stakeholders must be described, coordinated,
and verified.

• Problem and fault tracking between all stakeholders must be coordinated.

• Information flow between the stakeholders must be controlled and tracked.

• The stakeholders must possess the necessary expertise to complete the processes for

which they are responsible.

• There must be open communication between stakeholders.

Multiple stakeholders with expertise in their specific areas may make a better and safer product
if their effort is performed in accordance with the previously listed criteria.

Errors and failed projects using multiple stakeholders often result from inadequate training or
knowledge of the DO-178B processes to be used or inadequate DO-178B processes imposed on
the project.

D-20. ADDITIONAL FUNCTIONALITY REQUIRED BY SYSTEM

D-20.1 ISSUE DESCRIPTION

The situation may exist for which the systems SME is not aware of all the desired functionality.
The RE process may result in desirable MAL functionality that is discovered by the RE of the
LALs, and a process for the recognition and validation of such functionality should exist.

D-20.2 POTENTIAL MITIGATIONS

The RE process should ensure that the additional functionality is labeled as derived requirements
and passed through to the System Safety assessment process.

An SME may not fully understand the detailed requirements during the development of a
complex system.

For example, in a system for which a pulse is sent to a door latch followed by another pulse to
open a door, the requirement could be:

A pulse on door latch followed by a pulse on door actuator will cause the door to swing
open.

Such a system was implemented using slow actuators, and it worked. The system was then
reimplemented with a newer, faster computer with a smaller, more sensitive latch. During tests,
the programmer found that the latch was not releasing for a long enough time and the door could
not swing open. The previous latch had a greater moment of inertia, which held the latch open
long enough for the door to swing open. The new latch, being more responsive, opened, but
closed again before the door could be opened. To solve the problem, the programmer added a
delay loop so that the latch would be held open for a longer time.

D-14

This new functionality solved the immediate problem, but it was not reported back to the SME
and was deemed a requirement to make the latch work correctly.

Unfortunately, the increased current in the wire connected to the latch caused local heating,
which was not expected, and the heat buildup caused a fire hazard.

The problem stemmed from the addition of functionality that was not requested by the system
requirements. The fix by the programmer was reverse engineered. Functionality was added not
using information flowing from the MAL.

D-15

APPENDIX E—VALIDATION OF FRAMEWORK FOR SOFTWARE

Validation of the proposed framework for software was achieved with a project that had already
been accepted by the Federal Aviation Administration (FAA) and through review of the results,
the performance of the completeness checks and the execution of case studies. This validation
demonstrates the applicability and efficacy of the proposed framework for software.

E-1. VALIDATE FRAMEWORK

As stated previously in this report, a project that had already been accepted by the FAA was
evaluated and assessed against the framework. The plans applied to the standards were
examined, as were the requirements and design artifacts that had been reverse engineered. These
plans, requirements, and artifacts were also compared with the framework presented in the Phase
1 report.

E-2. BACKGROUND

GNAT is an open source compiler for the Ada programming language, which forms part of the
GNU Compiler Collection. GNAT is licensed under the General Public License. The Ada
Runtime Environment (ARTE) forms part of the GNAT tool chain. The authors of GNAT
founded a company called AdaCore, which maintains GNAT and distributes a supported version
called GNAT Pro.

Verocel reverse engineered DO-178B [E-1] lifecycle data for ARTE version 5.04a3, now known
as ARTE/Cert, for use with the Wind River Systems Platform for Safety Critical version 1.8.
This work was carried out on behalf of Smiths Aerospace (now GE Aviation)1, with the full
support of AdaCore, who developed ARTE. ARTE/Cert provides a reduced ARTE capable of
supporting safety critical Ada applications hosted on an Integrated Modular Avionics platform.
ARTE/Cert is now offered by AdaCore as part of the GNAT Pro High Integrity Edition.
ARTE/Cert was accepted by the FAA for use on the Boeing 787 Dreamliner, supporting
applications up to and including DO-178B Level A.

E-3. DELIVERABLES

The following project-specific plans were used:

• Project profile
• Plan for Software Aspects of Certification (PSAC)
• Software test plan

1 Verocel negotiated exploitation rights to use and sell Certification package; therefore, Verocel is able to put some of the certification
materials in the public domain.

E-1

The work performed by Verocel used the standard company processes, which are described in a
set of company-wide plans and standards:

• Software Development Plan (SDP)
• Software Verification Plan
• Software Configuration Management Plan
• Software Quality Assurance Plan
• Software Plans Addendum
• Software Requirements Standard
• Software Design Standard

Other than the planning documents listed above, the main deliverables were as follows:

• Software Requirements Specification
• Software Design Document
• Derived Implementation Requirements
• Software Life Cycle Environment Configuration Index
• Software Configuration Index
• Software Accomplishment Summary
• Requirements Traceability Document
• Software Vulnerability Analysis
• A Digital Versatile Disk—Read-Only Memory containing:

a. Software Verification Cases and Procedures
b. Software Verification Results
c. Problem Reports (PRs)
d. Software Configuration Management Records
e. Software Quality Assurance Records

The following white papers written by Verocel are relevant to this project:

• Modified Condition/Decision Coverage Analysis Using Short-Circuit Conditions
• Control-Coupling Verification With VerOLink
• Use of Requirements-Based Testing, Requirements Coverage Analysis, Linkage Analysis

and Structural Coverage Analysis to Confirm Data and Control Coupling
• Verification of Traceability
• Evaluation of GNAT Coding Style vs. DO-178B Section 11.8
• Certification of Elementary Functions in the GNAT/ARTE Cert Project

These papers were submitted for review by the FAA and designated engineering representatives
(DERs). They are not republished with this report for proprietary reasons.

E-2

E-4. PROCESS

ARTE/Cert is a general-purpose ARTE capable of supporting a variety of applications; therefore,
there are no avionics-based system requirements.

The high-level requirements (HLRs) for ARTE/Cert are based on the following:

• Ada 95 Reference Manual
• GNAT Pro High Integrity Edition Ada Language Profile for DO-178B Level A/B

Certified Applications

The software architecture and low-level requirements (LLRs) were reverse engineered from the
source code.

The Verocel Software Requirements Standard defines the criteria for the specification and
review of software requirements for a high integrity software (HIS) application or component.
The standard distinguishes two types of requirements:

1. Development requirements describe the expected behaviors of the HIS. Development

requirements may be either HLRs or LLRs.

2. Implementation requirements are LLRs related to the structure of the underlying source
code and are very detailed, specifying constraints, robustness, and boundary conditions.

The Verocel Software Design Standard specifically describes how to reverse engineer design
information from source code.

E-5. TOOLS

Verocel used its own tools, which were qualified as necessary:

1. VerOCode—This is a structural coverage analysis tool, qualified as a DO-178B software

verification tool.

2. VeroTrace—This is a requirements traceability tool, which managed the traceability
between:

a. HLRs and LLRs
b. LLRs and source code
c. Software requirements and test cases
d. Test cases and test procedures
e. Test procedures and test results

Two components of VeroTrace are qualified as software verification tools:

a. Link Verification of Traceability
b. Artifact Verification of Traceability

E-3

3. Test Harness—This automated test harness controls the execution of the tests and the
capture of the test results. It is qualified as a DO-178B software verification tool.

4. VerOLink—This tool assists with analysis of control coupling. It is qualified as a DO-
178B software verification tool.

E-6. COMPLIANCE WITH FRAMEWORK

E-6.1. SOFTWARE DEVELOPMENT PROCESSES AND SEQUENCE DEPENDENCIES

The project plans do not use the term “reverse engineering” (RE). However, the PSAC does use
the term “re-engineering” in a number of sections. This section provides a list of text fragments
taken from Verocel’s planning documents and standards that use the terms “re-engineering” or
“reverse-engineering.” These words have been highlighted using a bold font to help stress that
reverse engineering concerns were an integral part of the documents. The section and table
numbers refer to Verocel proprietary documents that are not part of this report.

• “The re-engineering of the certification evidence will be performed using Verocel’s

plans and procedures that are central to Verocel’s processes” (Section 4).
• “Where possible, the life cycle data materials are reused from prior certification

packages, or produced as new development (requirements, design capture, source code,
test procedures, and analysis) and re-engineered from the existing AdaCore data
materials. As the use of re-engineering does not assure that the derived materials match
the original materials, reviews by Verocel and AdaCore personnel verify that the derived
materials adequately represent the intent of the ‘as built’ product” (Section 5.2).

• “Engineering is responsible for re-engineering the life cycle data materials from the data
and source code delivered by Smiths Aerospace for the Ada runtime environment”
(Section 6.2.5).

• “The software requirements for ARTE/Cert will be re-engineered from existing
specifications, user documents, and the Ada Language Reference Manual” (Section
6.3.2.1).

Verocel’s White Paper on “Certification of Elementary Functions in the GNAT ARTE/Cert
Project” makes a number of references to reverse engineering:

• “We begin with the specific problems inherent to our reverse-engineering approach to

software certification” (Section 1).
• “In a reverse-engineering approach to certification, the requirements for a software

function can usually be deduced from the software and available documentation”
(Section 3).

• “The reverse-engineering approach does not allow us to deduce a precision requirement
for the elementary functions” (Section 4).

E-4

Verocel’s Software Requirements Standard E-2 does not mention RE. However, Verocel’s
Software Design Standard E-3 makes many references to reverse engineering in the following
instances:

• “Verocel’s design capture is a reverse engineering activity that uses the code and any

existing materials to capture the design of the HIS software” (Section 1.1).
• “Because Verocel’s Design Capture Process is performed on existing software, the

approach taken is primarily a bottom-up, or reverse engineering approach. In this
context, reverse engineering means that an understanding of the software components at
the lowest level is built up first, followed by and understanding of how the software
components are used together to provide higher-level functionality, thus providing the
building blocks that are used by higher-level functions. The reverse engineering process
records this understanding in a way that a reviewer would comprehend, and provides the
software design components (directories, source files and functions)” (Section 3.0).

• “If the LLRs are developed through a reverse engineering process, then the existing
software associated with the target-dependent LLRs (and design components) has already
been demonstrated to function with the target computer” (Table 6-1).

• “Where the data does not exist, then the reverse engineering process is used to
document the architecture and HLRs” (Table 6-1).

• “For a reverse engineering project, the software associated with the target-dependent
LLRs (and design components) already exists, and has been demonstrated to function
with the target computer” (Table 6-1).

In conclusion, the Software Design Standard seems to deal with RE adequately, but the Software
Requirements Standard appears to assume a forward engineering process.

E-6.2. COMPATIBILITY OF REGULATORY GUIDANCE WITH RE PROCESSES

ARTE/Cert has been approved by the FAA for use on The Boeing Company’s 787 Dreamliner to
support applications up to and including DO-178B Level A.

E-6.3. ROLES AND DESCRIPTIONS

This report identifies seven roles:

1. Subject matter expert (SME)
2. Requirements developer
3. Architecture developer
4. Source code developer
5. Verification role
6. Configuration manager
7. Quality Assurer

These roles are described as follows:

E-5

1. The Verocel plans and standards do not describe the use of SMEs. Although the PSAC
does not use the term SME, it does briefly describe the involvement of AdaCore
personnel:

“As the use of reverse engineering does not assure that the derived materials
match the original materials, reviews by Verocel and AdaCore personnel verify
that the derived materials adequately represent the intent of the ‘as built’ product”
(Section 5.2).

2. The role of requirements developer (author) is described in the Verocel Software

Requirements Standard.

3. The role of architecture developer (designer) is described in the Verocel Software Design
Standard.

4. The role of source code developer was carried out by AdaCore. The source code was

developed using the GNAT Coding Style—A Guide for GNAT Developers.

5. The verification role is described in the Verocel Software Verification Plan.

6. The configuration manager role is described in the Verocel Software Configuration
Management Plan.

7. The quality assurer role is described in the Verocel Software Quality Assurance Plan.

E-6

E-6.4. PROCESSES

The following Integration Definition for Function Modeling diagram, extracted from an SDP,
outlines the Verocel approach to the software life cycle for a project. Figure E-1 shows five
major activities.

A1

Review Verocel
Plans and
Standards

NODE: TITLE: NO.:Life Cycle Overview 1A

A2

Establish Project-
Specific Plans and

Standards

DO-178B Applicable
Standards

DO-178B
Applicable
Standards

Eng SQA

Eng SQA

Product Specification
A3

Develop
Certification

Materials

A4

Maintain
Configuration

(CM)

Eng SQA

Access
Control

List

Eng SQA

A5

Produce Physical
Medium

Eng SQA

VPP

Verified
HIS &

Approved
Artifacts

Customer
Software
Baseline

Software Conformity
Review

Deliverable SW
Certification Data Package

Verocel Process
Plans

Project Plans,
Project Standards,

SCStd,
 & Template Checklists

Verocel Process Plans

Software Baseline

Template Project Plans,
Project Standards,

 & Checklists

Project Plans, Standards & Checklists

SQA Audit Reports

Review
Comments

VPP = Verocel Process Plans =
 (SDP, SCMP, SVP, SRStd, SDStd, SQAP, SAP)

Requirements,
Software, &
Verification

Artifacts

Traceability Data

Figure E-1. Lifecycle overview

E-7

E-6.4.1. Develop Certification Materials

Of these five activities, The Develop Certification Materials activity is the most relevant to this
case study. Figure E-2 shows four phases of this activity.

NODE: TITLE: NO.:Develop Certification Materials Activity 3A3

A3-1

Establish
Requirements

Product
Specifications

SDP,
SCMP,
SVP,

SQAP,
SPA

VPP = Verocel Process Plans (SDP, SCMP, SVP, SRStd, SDStd, SQAP, SPA)
PPSC = Project Plans and Standards

(PSAC, Project Profile, STP, SCStd) & Checklists
HIS CB = High Integrity Software Code Baseline + Build Scripts + Built System
DB = Design Baseline (SDD+LL Design Descriptions)

SQAEng

A3-2

Capture Design

PSAC,
SRStd,
SDStd,

Project Profile

VPP

SW
Baseline

Requirement Review Checklists

SQAEng

PPSC

SQA Audit Reports

A3-3

Code Review

VPP PPSC

SQAEng

Code Review Checklist

Code Baseline (HIS CB)

A3-4

Verify Product
(Certification

Package)

HIS
CB

SQAEng

VPP PPSC

Approved RBTs & Results, Analysis
Traceability Data

Review Checklists
Verified HIS

SQA Audit Report
All Documentation

(SDD, SVA, SAS, SCI,SECI
Project Profile Document)

System
Requirements

Traceability Data

SRS & SRS Review Checklist
SQA Audit Reports

Traceability Data
Design Review Checklist

SDD
Design Baseline (DB)

Traceability Data

SQA Audit Reports

DBRequirements
Baseline

Figure E-2. Develop Certification Materials activity

E-6.4.2. Establish Requirements

The purpose of the Establish Requirements phase is to establish a requirements baseline and
document it in the software requirements specification. In general, the requirements are derived
from production specifications, software baseline, and system requirements.

The Verocel Software Requirements Standard defines the criteria for the specification and
review of software requirements for a HIS application or component.

In the specific case of ARTE, the requirements were derived from:

• The Ada 95 Reference Manual

E-8

• The GNAT Pro High Integrity Edition Ada Language Profile for DO-178B Level A/B
Certified Applications

• The software baseline

Figure E-3 provides a representation of the Establish Requirements phase.

NODE: TITLE: NO.:Establish Requirements Phase 4A3-1

A3-1-1

Develop
Requirements

A3-1-3

Produce Software
Requirement
Specification

(SRS)

A3-1-2

Review
Requirements

SDP,
SPA,

SRStd

Product Specifications

System (& HL) Requirements

SDP,
SPA,

SRStd

Eng

Eng

SQA

Eng

A3-1-4

Review Software
Requirement
Specification

(SRS)

Eng

SQAPSRStd

Project
Profile

Project
Profile

Proposed
SRS

Document

Customer Software Baseline

Completed
Checklist

Approved
SRS Document

A3-1-5

In-Process Audit

SQA

SQAP

SQA Audit Reports

SDP
Product Specifications - Includes Technical

Documentation, User manuals etc.
HL – High-Level Requirements from Customer
RTD – Requirements Traceability Document

Proposed
Requirements

Requirements Baseline

Completed Checklists

Project
Profile

Failed Review Records

SDP,
SPA

A3-1-6

Review HL to LL
Requirement

Links
HL to LL

Traceability Links HL to LL Traceability Analysis Document

SDP

SDP, SPA

Failed Review Records

Figure E-3. Establish Requirements phase

E-6.4.3. Capture Design

The purpose of the Capture Design phase is to create a Software Design Document that captures
the software implementation decisions shaping the product. In general, the design is derived
from requirements baseline, customer software baseline, and product specifications, if available.

The Verocel Software Design Standard defines the level and the type of information in
documenting the design of HIS.

In the specific case of ARTE, the design was derived from:

• The Ada 95 Reference Manual

E-9

• The GNAT Pro High Integrity Edition Ada Language Profile for DO-178B Level A/B
Certified Applications

• The software baseline

Figure E-4 provides a representation of the Capture Design phase.

NODE: TITLE: NO.:Capture Design Phase 5A3-2

A3-2-1

Document SW
Design

A3-2-2

Review SW
Design

Components

A3-2-4

Review SW
Design Document

A3-2-3

In-Process Audit

Eng

Eng

Eng SQA

SQAP

SDP,
SPA

SDStd

Design Component Files:
DH = Design, High-level (1 per source file)
DL = Design, Low-Level (function w/in a source file)

SDP,
SPA SDStd

SDD

SDP,
SPA,

SDStd

Product
Specs,

Etc.

Completed Checklists

Approved Design Components (DH/DL)

Completed Checklists

Traceability Data

SQA

SQA Audit Reports

SDP

Project
Profile

Project
Profile

Failed
Review
Record

Failed Review Records

Software Design Document
Product Specifications

Design
Component

Files

Traceability
Data

Requirements Baseline
Customer
Software
Baseline

Figure E-4. Capture Design phase

E-6.4.4. Code Review

The purpose of the Code Review phase is to review the HIS source code. When review of the
source code is complete, the system may be built (compiled and linked) to form an executable
software baseline.

E-10

Figure E-5 provides a representation of the Code Review phase.

NODE: TITLE: NO.:Code Review Phase 6A3-3

A3-3-1

Source Code
Review

Project Profile,
SCStd

Customer Software
Design Baseline

Eng

SDP

A3-3-4

Establish Code
Baseline (Includes

Build)

A3-3-2

In-Process Audit

Completed Checklist

SQA

Eng SQA

SQAP

SQA Audit Reports

SDP,
SCMP,
SQAP

Source Code Baseline

Source Code Baseline Audit

Design Baseline = Software Design Document +
Design Components SDP

A3-3-3

Modify SW
Baseline *Note

Requirements Baseline

Traceability Data

Traceability Data

Customer Software Baseline

Customer Eng

Problem Reports
to Customer

Build Scripts

Reviewed Source Code

Build Scripts

Built System

Build Environment

SCStd

Note: This activity is
performed by the Customer

Figure E-5. Code Review phase

E-11

E-6.4.5. Verify Product

The Verify Product phase produces evidence that the HIS has been verified against the
requirements and other artifacts.

Figure E-6 provides a representation of the Verify Products phase.

NODE: TITLE: NO.:Verify Product (Test and Integration) Phase 7A3-4

A3-4-1

Develop Tests

A3-4-2

Review Tests

A3-4-3

Run Tests

A3-4-4

Analyze
Results

A3-4-6

In-Process Audit

Eng

SDP,
SVP STP

Eng

SDP,
SVP STP

Traceability Data

Completed Checklists

Eng SQA

SCD = Structural Coverage Results =
(Listing files, Object files, Link Map)

STP

STP

Eng

Built System

SQA Memo (Document Test Environment, Testing Process)

Functional Test Results

Verified HIS

SQA
Audit Reports

SQAP

SQA

Structural Coverage Analysis & Checklist

Requirements
Based
Tests

Test Harness

PR (Coverage Incomplete)

STP
SDP,
SVP

SCD

Tests Baseline

Functional Test Results

Failed Review records

A3-4-5

Produce RVA
Files

Customer
Software Specification

Customer
Software Specification

SDP, SQAP, SVP

SDP, SQAP, SVP

RVA

Requirements
Baseline

Completed Checklists

Eng

SDP

Figure E-6. Verify Products phase

E-12

E-6.4.6. Analyze Results

The test results are analyzed against the expected results for functional tests and structural
coverage analysis.

Figure E-7 provides a representation of the Analyze Results activity.

NODE: TITLE: NO.:Analyze Results Activity 8A3-4-4

A3-4-4-1

Analyze
Functional

Results

A3-4-4-3

Review Coverage

A3-4-4-2

Analyze Coverage
Results (Qual

Tool)

SDP,
SVP

Eng

Coverage
Tool

Annotated
Coverage
Listings

Eng

SQA

Functional Test Results

Completed Checklists

Coverage Test Results

Completed Checklists

SDP,
SVP

Functional Test Results

Eng

Structural Coverage Data

Annotated Structural Coverage Analysis

STP

STP

SDP STP

PR (Coverage Incomplete)

Structural Coverage Data =
(Listing files, Object files, Link Map)

Figure E-7. Analyze Results activity

E-6.4.7. Assessment of Process Against Framework

The requirements and design were reverse engineered from the source code, the Ada 95
Reference Manual, and the GNAT Pro High Integrity Edition Ada Language Profile for DO-
178B Level A/B Certified Applications. The tests were forward engineered from the resulting
requirements baseline. The approach taken was therefore compliant with the proposed
framework.

E-6.5. THE RE ASPECTS OF SOFTWARE VERIFICATION

As stated previously, ARTE was developed by AdaCore and had good credibility in respect to
statements made toward this project that uses ARTE/Cert. The PSAC states that reviews by
AdaCore personnel will verify that the reverse engineered materials accurately represent the
intent of the as-built product.

E-13

E-6.6. GENERIC RE SUBJECT MATTER EXPERT VERIFICATION PROCESS

Any issues raised by AdaCore were recorded as PRs by their subject matter experts (SMEs). It is
recommended that the Verocel Plans and Standards should be updated to formalize the use of
SMEs, rather than leave this to the project-specific PSAC.

E-6.7. ACCEPTANCE CRITERIA

The ARTE requirements and design artifacts exhibit a satisfactory level of abstraction from the
source code. The requirement review checklist appears to be based on the normal
DO-178B [E-1] criteria (e.g., each requirement is accurate and unambiguous, and does not
reflect the special needs of RE suggested by the proposed framework). It is recommended that
the Verocel requirements review checklist be updated in accordance with the framework.

E-6.8. RECOMMENDATIONS

The Certification Package was completed, assessed through four Stage of Involvement audits,
approved by several DERs, and signed off by the DER of record. Analysis of the planning
documents and standards show that while adequate procedures were used during the verification
process, some elements were done as a good software engineering practice, although they were
not formalized in the plans and standards. The following recommendations are made as a result
of assessing the ARTE case study against the proposed framework:

• The Verocel Software Requirements Standard should be updated to define how RE

techniques should be used, if appropriate.
• The Verocel process plans should describe and formalize the use of SMEs.
• The Verocel requirements review checklist should ensure that the LLRs show some level

of understanding of the intent of the source code and are not too close a match to the
source code.

E.7. REFERENCES

E-1. RTCA/DO-178B, Software Considerations in Airborne System and Equipment
Certification, December 1, 1992.

E-2. SR Std., Software Requirements Standard, Version 2.0. Verocel Company, 2009.

E-3. SR Std., Software Design Standard, Version 2.0. Verocel Company, 2009.

E-14

APPENDIX F—VALIDATION OF FRAMEWORK FOR AIRBORNE ELECTRONIC
HARDWARE

F-1. VALIDATE FRAMEWORK

This project was controlled by the International Traffic in Arms Regulations. No details of the
specific project, functionality, customer, and aircraft are disclosed using XXX that prevents
precise identification of the equipment, but the approach to certification is analyzed as it pertains
to reverse engineering (RE). The scope of this project was described in the XXX Plan for
Hardware Aspects of Certification (PHAC) as follows:

This document is the PHAC for the XXX of the Identified Aircraft.

The XXX is comprised of a number of Interface Control Units (ICUs) that are
interconnected using a communication network. Each ICU contains a number of devices
arranged on circuit boards. Each board contains a microcontroller, memory, a commercial
off-the-shelf device to control the lower levels of the communications protocol, and other
devices developed specifically to support the ICU and XXX. These devices are
interconnected using various information busses. The devices work at different speeds
and have their own specific communication protocols. A programmable logic device
(PLD) is used to manage the interconnections between the devices and connections to
various discrete input/output pins. This PLD is a field programmable gate array that will
be programmed specifically to support the design of the ICU target board. The PLD will
be developed and verified to ensure that the target board supports the functional
operations of the ICU and the XXX.

This plan addresses the engineering and management processes and practices to be used
during the development and verification of the PLD program. These processes and
practices will result in life cycle data for the PLDs2 as a complete certification data
package to support approval under the objectives of DO-254 [F-1] for Design Assurance
Level B.

This plan is modeled after the software certification guidelines of DO-178B [F-2] and
complies with DO-254. It describes both the hardware development life cycle activities
used by the customer in the development of the PLDs for the XXX and the verification
activities performed by Verocel, Inc. on behalf of the customer.”

This plan is intended for use by the certification authorities and their designees to allow a
review of the intended development and verification processes, and the determination of
the adequacy of the processes used.

2 Two separate PLDs were used on the platform: one implemented the high-speed bus, and the other implemented the A/D converters, discrete
signals, and low speed busses.

F-1

The initial PHAC was written by the customer and Verocel, with a clear delineation of the work
to be performed and the responsibilities. Figure F-1 shows the initial diagram as developed to
capture the interface between the development and verification processes.

Identify System
and derived

requirements

Capture
Hardware

Requirements

Production
Transition

Implementation

Preliminary
Design

Detailed Design

Develop
Requirements-Based

Verification Tests

Produce Structural
Coverage Analysis

Verify Device
Design using

MODSIM

Develop
MODSIM Test

Cases

Review
Verification Tests

‘Customer’ Hardware Design Life Cycle Phases

Verocel Verification Life
Clcye Phases

VeroTrace Database,
Common CM System

Review HW
Requirements

Preliminary
Design Review

Detailed Design
Review

Procurement

P1

P9

P10

P8

P7
P6

P5

P4

P3

P2

Generate
Certifiacation
Data Package

Software Based
Verification

Testing

V5V1

V9

V8

V4

P12

P11

Review MODSIM
Test Cases

V10
V7

V3

V2 V6

Figure F-1. Summary of hardware life cycle activities between the customer and Verocel

Figure F-1 describes the processes and interactions between the companies as planned in the
PHAC. Note that the Detailed Design activity was the Verilog representation of the
implementation. The intent was that the development process was performed by the customer,
and then Verocel would perform the verification.

F-2

The activities performed by each company and the interaction activities were described in detail,
and a summary is presented in table F-1:

Table F-1. Information flow, activities, and responsibilities between companies

Activity/Data Company Process Artifact
Identify
System and
Derived
Requirements

Customer

Customer to allocate system and
derived requirements to the ICU
hardware.
Refer to Sections 3.2 and 4.1.1 of the
Hardware Development Plan. [E-1]

Requirements are
captured in VeroTrace
and allocated to
HWCI-1.

Capture
Hardware
Requirements

Customer

Develop the hardware requirements for
HWCI-1 from the system and derived
requirements. Allocate the hardware
requirements to the applicable
programmable devices.
Refer to HDP 4.1.2.

P1 Customer
Capture the requirements in VeroTrace
and establish traceability to system
requirements.

Draft HRS

Review HW
Requirements Customer

Review the hardware requirements and
document the review actions. Ensure
all action items are closed. Establish
the requirements baseline for HWCI-1.
Issue the approved HRS.
Refer to HDP 4.1.2, 5.2.1 .

HRS
Requirements Review
Checklists

P2 Customer Capture the requirements reviews in
VeroTrace.

V1 Verocel Extract requirements from VeroTrace
for the programmable devices.

Develop
Requirements
-Based
Verification
Tests

Verocel

Develop software tests to execute on
the ICU that verify the functionality of
the programmable devices. These tests
are driven by the requirements for each
device.

Requirements-based
functional tests.

V2 Verocel

Place the requirements-based
functional tests under configuration
management. Update the traceability
data in VeroTrace.

Review
Verification
Tests

Verocel
Review the requirements-based tests
against the device requirements.

Test review checklists

F-3

Table F-1 Information flow, activities, and responsibilities between companies
(continued)

Activity/Data Company Process Artifact

V3 Verocel Capture the test reviews in VeroTrace.

Preliminary
Design Customer

Generate the design specifications for
the high-level functional
entities,including programmable
devices, drawings, preliminary parts
lists, and interface control drawings.
Refer to HDP 3.2, 4.1.2, 5.2.2.

Design specifications.
Interface Control
Drawings
Parts Lists

P3 Customer

Update the requirements traceability in
VeroTrace to reference the applicable
design artifacts. Place generated
artifacts under configuration
management.

Preliminary
Design
Review

Customer

Review the high-level architecture,
design specifications, and other
identified artifacts. Conduct
preliminary design review.

Design review
checklists

P4 Customer

Capture preliminary design reviews in
VeroTrace.
Place generated artifacts under
configuration management.

Software
Based
Verification
Tests

Verocel

Perform the functional requirements-
based testing for the programmable
devices on the ICU. Review the
functional test results (FTR) and
generate the functional test results
checklists.

Functional test results
Checklists

V4 Verocel

Place the functional test results and
associated reviews under configuration
management. Update the traceability
data in VeroTrace.

Detailed
Design Customer

Generate Verilog representations for
each programmable device. Update
parts lists, update diagrams, and
schematics.
Refer to HDP 3.2, 4.1.3, 4.1.4, 5.2.2

Verilog source files
Updated Parts lists
Updated diagrams and
schematics

P5 Customer
Place the Verilog representation under
configuration management. Update the
traceability data in VeroTrace.

F-4

Table F-1 Information flow, activities, and responsibilities between companies
(continued)

Activity/Data Company Process Artifact
Detailed
Design
Review

Customer
Review the detailed design of the
programmable devices.

Design review
checklists

P8 Customer

Capture detailed design reviews in
VeroTrace.
Place generated artifacts under
configuration management.

V5 Verocel Extract Verilog representations for the
programmable devices.

Develop
MODSIM
Test Cases

Verocel
Develop modeling and simulation-
based test cases and scenarios to
exercise the Verilog representations.

MODSIM test cases
and scenarios

V6 Verocel

Place MODSIM-based test cases and
scenarios under configuration
management. Update the traceability
data in VeroTrace.

Review
MODSIM
Test Cases

Verocel

Review the MODSIM-based test cases
and scenarios and consider the ability
to demonstrate structural coverage of
the Verilog representation.

Test review checklists

V7 Verocel
Capture test reviews in VeroTrace.
Place generated artifacts under
configuration management.

P6 Customer Provide parts lists to Procurement.

Procurement Customer
Control parts lists, manage receiving
process, release drawings to the
customer’s production release system.

Parts lists and other
released data related to
programmable devices

Verify Device
Design using
MODSIM

Verocel

Execute MODSIM test cases and
scenarios against baselined Verilog
files. Capture and annotate MODSIM
simulation results.

MODSIM simulation
results

V8 Verocel

Capture MODSIM simulation results in
VeroTrace.
Place generated artifacts under
configuration management.

Produce
Structural
Coverage
Analysis

Verocel

Use MODSIM results to verify Verilog
coverage. Document coverage analysis
results.
Document review of structural
coverage.

Structural coverage
analysis results
Structural coverage
analysis review
checklists

F-5

Table F-1 Information flow, activities, and responsibilities between companies
(continued)

Activity/Data Company Process Artifact

V9 Verocel

Capture coverage analysis results and
associated review checklists in
VeroTrace.
Place generated artifacts under
configuration management.

P7 Customer
Provide any revised data to
Procurement that affects purchased or
manufactured components.

P9 Customer
Provide final design package to
programmable device manufacturers
for fabrication.

P10 Customer Release manufacturers to begin
fabrication.

First Build Customer

Produce sufficient hardware assets to
support the remaining development and
verification activities.
Refer to HDP 3.2, 4.1.5.

Released Functional
Test Plan

P11 Customer Update the TDP contents in VeroTrace
and configuration management.

P12 Customer Extract the TDP in preparation for
transition to production.

Production
Transition Customer

Complete hardware/software
integration.
Perform airworthiness qualification
testing.
Verify the TDPs; update and release
production test procedures.
Refer to HDP 3.2, 4.1.6, 4.1.7, 5.2.3,
5.2.4.

Updated TDP

V10 Verocel

Extract requirements and traceability
data from VeroTrace.
Extract baselined artifacts from
configuration management.

Generate
Certification
Data Package

Verocel
Generate CD image of the certification
data package (DO-254 compliant) for
the programmable devices.

Completed CD

HDP=Hardware development plan; MODSIM=Modeling and simulation; HRS=Hardware requirements
specification; TDP=Technical data package; HWCI-1=Hardware configuration item #1; CD=compact disc

F-6

The system requirements, high-level requirements (HLRs), and preliminary design were
developed and reviewed by the customer for credit.

The expectation was that the HLRs and preliminary design would provide the requirements that
form the basis for the verification work performed at Verocel.

As the project progressed and the HLRs and code were delivered, initial review revealed that the
requirements were inadequate. At the customer’s direction, Verocel was given the responsibility
for the development of low-level requirements (LLRs). The project became an RE certification
effort. HLRs, preliminary design, and Verilog code were imported into the VeroTrace database
and Verocel configuration management system. Verocel obtained detailed specifications of all
devices that were being interconnected (e.g., analog/digital (A/D) converters, serial
communication devices, etc.). These specifications provided connection details as well as the
communication protocols. RE of LLRs from the available information and Verilog code was
performed using the processes typically used for software.

The code was reviewed informally, LLRs were written by Verocel engineers, and traceability
was added as the information was placed into VeroTrace. The LLRs were then reviewed against
the HLRs, interface specifications, and preliminary design, which was treated as a high-level
design. This review was performed both at Verocel and by subject matter experts (SMEs) at the
customer site.

LLR-based tests were written in Verilog and executed on a simulator. A test-scripting
mechanism was written to ensure that all of the Verilog tests could be run and results captured in
a single test run. The same testing script and tests were then used to run the tests in coverage
mode. Coverage metrics were captured along with the test results.

This process followed the Verocel company-wide verification plans used for software, but
adaptations were made as necessary for the Verilog simulation approach used for tests.

The customer retained responsibility for integration and system tests. Verocel was not involved
in those processes.

The final Hardware Accomplishment Summary (HAS) was written by the customer using
information and referencing life cycle data provided by Verocel. The life cycle data was
produced using the Verocel Digital Versatile Disc-Read Only Memory (DVD-ROM) process
where all of the life cycle data is extracted from configuration management and transferred to a
DVD-ROM. Additional traceability files are loaded, which provide hyperlinked traceability
between all artifacts as required by DO-254. A standard browser may then be used to navigate
between all life cycle artifacts. In addition, traceability information is extracted to tables that are
stored on the DVD-ROM to allow information to be easily searched, sorted, and analyzed.

F-7

F-2. THE RE EXPERIENCE

The PHAC was not originally written with RE in mind. The intent was to follow a waterfall
development process, followed by a waterfall verification process. The customer decided that a
working prototype was more important, as there were many other applications and systems
activities that were dependent on having a functional platform. The platform was developed
before the rest of the system by developing the platform components, programming the PLDs,
and integrating the components. The following RE approach was then applied to the platform
software and PLD devices:

• The PHAC was not changed to describe the RE approach adopted part way through the

program; however, the Verocel processes that address RE were called out, and the change
was described in the Electronic HAS.

• Access to domain experts was provided and was very useful at the start of the project.
However, part way through, the expert left and was replaced by someone who was not as
familiar with the system. By this time, Verocel had mastered much of the intent of the
platform and was able to suggest changes to the platform using their expertise. System
level experts were available, but they were not platform experts, and did not fully
understand the nuances of some platform behaviors.

• The verification reviewers were much more risk averse than the original developers.
While the system worked well, the verification engineers were much more concerned
with the timing margins programmed into the PLD design. If a pair of signals was
expected in sequence, then the code was written to respond correctly if a specific signal
appeared before the other (e.g., data, followed by data ready). However, if they arrived at
the same time, the processing was performed as if they were in very close sequence.
Because the signal times could deviate slightly based on temperature and component
tolerances, the review engineers requested a predefined time margin, which would
accommodate potential variations and improve reliability. As the system worked well in
the engineering laboratory, there was some reluctance to make any changes. Verocel had
to insist, refusing to support designated engineering representative audits unless the
problems were addressed.

F-3. ASSESSMENT OF THE RE FRAMEWORK FOR AIRBORNE ELECTRONIC
HARDWARE

RE was not planned initially, and the PHAC accurately reflected the intent. As RE development
and verification were adopted, it was decided to document these deviations in the final HAS.

Access to SMEs was good at the start of the project, but unplanned personnel changes at the
customer site part way through the project meant that access to SMEs became poor. Access to
the overall system experts was available throughout the project, but specific expertise on
platform and board level design became scarce. Fortunately, this was mitigated by the
verification engineers becoming experts in the requirements and design of the platform.

F-8

The verification materials were produced and traceability was established for the devices. The
consistency between all life cycle artifacts was established with independence, although the
project had a Design Assurance Level of B.

The Verocel company process plans support an RE verification approach. These plans were
referenced in the PHAC for the project. RE was followed, although the PHAC did not describe
an RE approach. The HAS did make the appropriate adjustments.

Following the recommendations of this report, it would have been better to make the use of RE
much more explicit by changing the PHAC.

The following recommendations are made as a result of assessing the airborne electronic
hardware case study against the proposed framework:

• The Verocel Software Requirements Standard should be updated to define how RE

techniques should be used, when appropriate.

• The Verocel process plans should describe and formalize the use of SMEs.

• The Verocel requirements review checklist should ensure that the LLRs show some level
of understanding of the intent of the Verilog code and are not too close a match to the
code.

• The Verocel document review checklist used to review the PHAC documents should be
updated to ensure that RE is addressed, if used.

F-4. REFERENCES

F-1. RTCA/DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,”
April 19, 2000.

F-2. RTCA/DO-178B, “Software Considerations in Airborne System and Equipment

Certification,” December 1, 1992.

F-9

	Abstract
	Key Words
	Table of Contents
	List of Figures

