

Using Java in Safety-Critical Applications

ISO 26262 Certification for Real-Time Java Code

White Paper

Wolf-Dieter Heker

Rainer Koellner

Verocel, GmbH

Copyright  2017 VEROCEL GmbH

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of VEROCEL GmbH

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page i

TABLE OF CONTENTS

Using Java in Safety-Critical Applications .. 1

1 Abstract .. 1

2 References .. 1

3 Introduction .. 2

4 What is different with Real-time Java? .. 2

4.1 General aspects of OO.. 2

4.1.1 Class Hierarchy .. 3

4.1.2 Dynamic binding .. 3

4.2 Memory Management .. 3

4.3 Multithreading .. 5

4.4 Exception handling ... 6

4.5 Class initialization .. 7

4.6 Dynamic Loading ... 7

4.7 Interpretation versus Compilation .. 7

5 Requirements for Real-time Java Implementations ... 8

6 Using Real-time Java with ISO 26262 and DO-332 .. 10

6.1 Comparison of ISO 26262-6:2011 to DO-178C .. 11

6.2 Objectives and Activities for Object Oriented Software .. 13

6.3 Class Hierarchy, Tracing and Type Consistency ... 18

6.4 Strategy for memory management ... 18

6.5 Overloading and type conversion vulnerabilities ... 20

6.6 Strategy for exception management ... 20

6.7 Reusing components .. 21

7 Verification with JamaicaVM .. 23

7.1 Verifying JamaicaVM Applications... 23

7.1.1 Storage Requirements .. 23

7.1.2 Execution Time Limits ... 23

7.1.3 Exception handling scheme .. 24

7.1.4 Guaranteed response times ... 24

7.1.5 Interoperability between application code and libraries..................................... 25

7.1.6 Interoperability with Native Code .. 25

7.2 Verifying Third Party Libraries.. 25

7.3 Verifying the JamaicaVM Libraries ... 26

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page ii

7.3.1 Storage Requirements .. 26

7.3.2 Execution Time Limits ... 26

7.3.3 Exception handling scheme .. 27

7.4 Verifying the JamaicaVM Runtime Environment ... 27

7.4.1 Verification of the Garbage Collector .. 28

7.5 Verification of Compiler Output .. 28

8 Potential Problems .. 30

9 Conclusion .. 31

Appendix A Acronyms .. 32

Appendix B Example for OO paradigm implemented by switch 33

LIST OF FIGURES

Figure 6-1 V-model Verification Diagram .. 12

Figure 7-1 Synchronization points in interpreted versus compiled code .. 25

Figure 7-2: Placing Synchronization Points into the compiled code ... 28

Figure 7-3: Certifying the Output of the Compiler.. 29

Figure B-1 Example Hierarchy ... 33

Figure B-9-2 Implementation by switch construct in C ... 33

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 1

1 Abstract

This document provides an analysis of the concerns with using Java, in particular real-time

Java, in safety-critical applications. The focus is on hard real-time applications subject to

certification based on ISO 26262. Both safety and timeliness are considered.

As ISO 26262-6:2011 is not specific on activities regarding object-oriented (OO) languages,

this document refers to guidance provided for real-time applications in avionics, which have

similar certification requirements. The avionics standard RTCA/DO-178C has an entire

supplement on object-oriented technology and related techniques called RTCA/DO-332. DO-

332 is used in this document to supplement the lack of detail for object-oriented technology in

ISO 26262.

Furthermore, this document outlines a road map of necessary activities for using the aicas

JamaicaVM implementation of real-time Java in a safety-critical environment.

2 References

• ISO 26262-6:2011 (E)

Road vehicles — Functional safety,

Part 6: Product Development at the Software Level

• RTCA/ DO-332, Object-Oriented Technology and Related Techniques Supplement to

DO-178C and DO-278A; RTCA, Inc., December 13, 2011

• [HRTGC]

Hard Real-time Garbage Collection in Modern Object-Oriented Languages: Fridtjof

Siebert, aicas GmbH; 2002

• Java

The Java® Language Specification Java SE 8 Edition; Oracle America, Inc. and/or its

affiliates; 2015

• [RTSJ]

Real-time and Embedded Specification for Java; Editor James J. Hunt, aicas GmbH

Version 2.0, Draft 59, General Relativity Edition, March 20, 2017

• [SCJ]

Safety-Critical Java Technology Specification, JSR 302, Editor Doug Locke, Version

0.110, Draft, February 2, 2017

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 2

3 Introduction

Though conventional Java is fine for applications that do not have a time bound, i.e., do not

have real-time requirements, it should not be used for control applications. Therefore, this

study confines itself to real-time Java. Real-time Java is defined as a Java implementation

that conforms to the RTSJ specification and has a real-time garbage collector (GC).

Certification of real-time Java requires surmounting a number of challenges that procedural

languages do not have. These challenges are identified below, along with a means of

overcoming them. Since certification can only be done on a specific real-time Java

implementation, the JamaicaVM has been chosen for this purpose. This means the study must

address issues that are specific to JamaicaVM. This is rounded out with a proposal for

verifying applications that run on JamaicaVM and its runtime environment, with special

emphasis on memory management systems.

This study does not distinguish between safety levels; rather it assumes the highest assurance

level: ASIL D.

Although there is ongoing work on specifying Safety-Critical Java, it was not considered here

for three reasons. First, the specification is not yet complete. Second, it would severely

restrict the language, as only a small number of standard classes are available. Finally, it only

supports scoped memory, as stack-like memory management technique, which also severely

restricts what Java libraries can be used. These restrictions drastically limit the compatibility

with conventional Java, which is deemed unacceptable for the scope of this paper. Instead,

the semantic refinements and additional APIs of the Real-time and Embedded Specification

for Java ([RTSJ]) are considered as providing the extensions necessary for real-time response.

4 What is different with Real-time Java?

There are several differences between Java, both conventional and real-time, and procedural,

such as C and Ada, that are usually used for safety-critical applications. Each of these is

addressed in turn in this paper. Since C++, another object-oriented language is also

considered appropriate for safety-critical applications; a comparison is also drawn with C++,

highlighting pros and cons.

4.1 General aspects of OO

The OO paradigm is an excellent approach to mastering the complexity of applications. The

idea of classes and object was designed to help reduce coupling between different parts of a

system. The issues discussed below are essentially due to application complexity rather than

due to the OO approach itself.

Note that these issues might even apply when OO paradigms are used for applications

implemented in C where the dynamic binding is ‘hand-crafted’, using pointers to functions or

switch/case constructions.

When an application needs to distinguish between different actions, an OO implementation

will express this with a class hierarchy and dynamic binding. In a non-OO approach, the

actions would be selected by equivalent switch/case construction or by using function

pointers; OO is simply a more systematic approach which makes the need for consistency

obvious in the class hierarchy. See the “Example for OO paradigm implemented by switch”

provided in Appendix B.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 3

4.1.1 Class Hierarchy

The class hierarchy must be consistent. While the language semantics make sure that any

operation defined in a class is also available in all subclasses, the designer of the class

hierarchy must make sure these operations are semantically consistent regarding pre-

conditions and post-conditions in accordance with the Liskov Substitution Principle (LSP)

(examples are also given in DO-332 or found in Wikipedia). In short, the Liskov Substitution

Principle requires the following:

• Pre-conditions cannot be strengthened in a subtype;

• Post-conditions cannot be weakened in a subtype; and

• invariants of the supertype must be preserved in a subtype.

Adherence to the above criteria requires systematic testing (or analysis of the hierarchy).

4.1.2 Dynamic binding

Object-oriented applications typically make heavy use of dynamic binding, because using a

class hierarchy without dynamic binding does not exploit the powers of OO. Thus, when

looking at the source code, one does not know exactly which member function is being called.

This makes the analysis of the source code more complicated, even for calls where only a

single implementation is available, dynamic binding will often be used.

Even when the implementation of the class hierarchy is shown to be consistent, adhering to

the LSP, the execution time can vary between different implementations of the same

operation. This makes it harder to specify the execution time of operations in class

hierarchies. Since dispatching is used instead of branching across various types, internal

variation is replaced with variant across the methods that can be called as a result of the

dispatch.

The coverage analysis for dynamically bound method calls should also demonstrate the

correctness of dispatch tables.

Invoking interface methods requires a search process because of possible multiple

inheritance1. The search process makes the determination of the execution time more

complicated. In general, the dispatch time is proportional to the number of interfaces a class

implements. This call overhead can be measured for common cases.

4.2 Memory Management

Java is a language which heavily relies on dynamic memory allocation and includes a garbage

collector. Historically, safety-related applications have used little or no dynamic memory

management (except for executions stacks which are well understood and easy to manage).

Before going into details for Java, here are the possible levels of dynamic memory

management:

• Using no dynamic memory allocation at all (or only during initialization).

From a safety perspective, this is clearly the easiest way. But it severely restricts the

application.

1 Note that the implementation described in [HRTGC] 10.3.1.3 is NOT implemented in the current version

of Jamaica. A linear search is performed, i.e., for an instance of a class that implements n interfaces, there

are at most n comparisons to find the method table that corresponds to this interface. This n is typically

small (1 or 2) and easy to determine for every class.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 4

• Specialized memory management by the application.

Most non-trivial applications need at least some dynamic memory management.

Often, memory is pre-allocated in pools of objects of the same size and the application

manages these pools explicitly (Object Pooling). This avoids the general problem of

heap fragmentation; but when a pool exists for each object size, with dynamically

sized objects like strings, this is impractical. But, it requires many object pools to be

sized correctly. In fact, there is also fragmentation because free memory in one pool

cannot be used by allocations for another pool. It is also susceptible to a program

releasing an object too soon or not at all, which can result in object corruption or

memory exhaustion respectively.

• Heap management by the application.

Allocations and deallocations from the heap are performed under control of the

application. While allocation is relatively easy to manage, it is often quite hard for

applications to decide when a piece of memory can be deallocated. Errors in the

deallocation are frequent and hard to find. The consequences of error in deallocation

are either memory leaks or references to memory which is already used for a different

object, with hard-to-predict consequences.

Heap fragmentation is still an issue resulting in varying time required for allocation

and deallocation.

• Implicit heap management by the runtime environment (garbage collection).

Allocations are either explicit by the application or implicit through the use of certain

language constructs. Deallocations are always implicitly performed by the garbage

collector. The big advantage is that the application is freed from the burden of

deciding when to deallocate an object2. The garbage collector is part of the runtime

environment; it must be verified only once and can be used for many applications.

Typically, the garbage collector also implements a solution for heap fragmentation.

The following issues arise with dynamic memory allocation:

• Time required to allocate / free memory:

o With Object Pooling, this is generally not an issue; the operations can easily be

performed in constant time.

o When using a common heap, whether managed by the application or the

garbage collector, this is generally not the case. The allocation strategy

determines the complexity of the operations.

o When using a garbage collector, the time required for garbage collection is

non-deterministic. First, it reduces the execution time remaining for the

application. Second, there is typically some need for synchronization between

the garbage collector and application code, which introduces a blocking time.

This increases the latency for reactions to external events by the application.

• Out-of-memory conditions:

Allocations can fail if no more memory is available. Application designers must

2 Sometimes, applications can help the garbage collector by explicitly overwriting object references with

NULL, so the garbage collector can deallocate the object. But such actions are easier to verify than the

actual deallocation. In particular, a runtime error would be detected should the application erroneously try

to use such a NULL reference.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 5

estimate the memory usage of the application and design the application to react to

failures of memory allocation.

• Fragmentation:

Fragmentation describes the situation where unused memory cannot be used to satisfy

application requests. It occurs when many small pieces of memory are free but none of

them is large enough to satisfy a request. This form typically occurs when using a

common heap.

With object pooling, there is no fragmentation within a pool. But there is a similar

problem when one pool is exhausted and memory from other pools cannot be used.

With many pools, it becomes difficult to size each pool properly without wasting too

much memory.

• Premature Release:

No object for which a reference exists3 may be released to the free list. This is part of

the job of the garbage collector, to release only objects that are no longer referenced.

For object pooling, this must be demonstrated for each application because returning

objects to the pool is the job of the application.

• Memory Leak:

A memory leak happens when the last reference to an object is dropped but not freed.

In a garbage collected system, this is a condition under which an object is eligible for

being collected, but for other techniques such as pooling this will eventually cause the

program to run out of memory. This should not be confused with object hoarding,

which is similar: an object is not lost, but a reference is maintained after it is no longer

needed.

Java was designed for using an automatic garbage collector: there is no explicit use of

pointers, each “new” operation allocates memory and there is no explicit deallocation feature.

This makes it possible to implement an exact garbage collector, which can give guarantees to

detect free memory. For languages like C and C++, garbage collectors cannot be exact due to

language properties. An exact garbage collector must know precisely where all pointers are,

both in the heap and in the stack. Since a C or C++ program can morph any integer into a

pointer, add any constant to a pointer, and run off the end of arrays, there is no way to know

where all references are for certain. For those languages, applications typically perform the

deallocations, which is error-prone. As outlined in DO-332, OO.D.1.6.3 and OO.D.2.4.2.2.2,

an exact automatic garbage collector addresses most of the issues with dynamic memory

management.

The fragmentation and timing issues are still present for Java in general.

Section 6.4 and [HRTGC] show how these are addressed in the JamaicaVM implementation.

4.3 Multithreading

Many applications inherently need support for multiple threads. Even if not strictly necessary,

multithreading often allows for simpler implementations. Essentially, application designers

have three choices to implement multithreading.

• Create an application-specific scheduler.

This enables tailoring to the specific needs of an application, but the implementation

3 More precisely, we can exclude references for which it is known they will not be used to access the

object.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 6

effort makes it only suitable for very simple systems. Even then, there is a portability

issue.

• Use a commercial-of-the-shelf (COTS) real-time operating system (RTOS), using the

RTOS specific API in the application.

This provides a full-featured RTOS with less implementation effort for the

application; the verification of the RTOS is typically performed by the RTOS

provider.

As the RTOS and the programming language used by the application are defined

separately, they are not tightly integrated. The application is typically restricted to a

procedural interface for synchronization. Higher level concepts like monitors must be

created explicitly at the application level.

• Use a programming language with built-in support for multithreading.

This reduces the implementation effort for the application and improves portability;

the verification of the runtime environment is typically performed by the provider of

the runtime environment.

This approach also provides seamless integration of the programming language and

the multithreading concept. For example, the interaction between multithreading,

memory management, and exception handling are precisely defined within the

programming language. As these facilities are implemented together, there are more

opportunities for optimizations. The language must then provide the scheduling

paradigm needed by the application.

Real-time Java and Ada, among others provide such an integrated multithreading

concept for time-critical systems.

Conventional Java has several issues with real-time applications, e.g., undefined scheduling

and synchronization behavior. For this reason, the discussion here focuses on Java with the

extensions and semantic refinements of the Real-Time and Embedded Specification for Java,

see [RTSJ]. With these concepts applied, real-time Java provides for priority preemptive

scheduling with priority inversion avoidance.

When a safety-critical application to be verified is multithreaded, the timing characteristics

play an important role. Key questions, besides the timing of the application code itself, must

be answered.

• What is the execution time for context switches?

• What is the time between an event triggering a context switch and the actual

occurrence of the context switch? This affects the reactivity of the application and is

influenced by blocking times introduced by the application itself and the runtime

environment.

Blocking through the garbage collector requires particular attention. (See section

7.1.4).

Note: Multi-processor / multi-core systems are not considered in this paper.

4.4 Exception handling

Exceptions can be thrown implicitly or explicitly. Exception paths need special attention for

coverage analysis and worst case execution time (WCET) calculations. The time required to

locate an exception handler might include a search process that depends on the stack depth.

This is specific to language and implementation.

WCET with exceptions might be much longer than for the non-exception path. If callers

always assume the exception path is taken, this might lead to very bad WCET calculations.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 7

When an exception is handled locally, the caller might not even be aware that it occurred, so

the caller may incorrectly assume that the non-exception WCET applies.

The strategies for exception handling and WCET calculations must match. Defining these

concepts is beyond the scope of this paper.

4.5 Class initialization

See [HRTGC] 10.3.1.2. Static initializers are executed upon first use of a class, which might

be while the application is already in operational mode. Applications should devise a scheme

for initialization. For example, classes can be explicitly initialized with the Class.forName

method.

4.6 Dynamic Loading

Loading of classes is performed in two different contexts:

• Loading the code for a pre-configured application requires making sure that only

approved configurations are loaded. This can be achieved by restricting the possible

sources of code, e.g. to a single image created by a builder tool.

• Loading additional classes from dynamically computed load paths, possibly over the

internet. This is a feature which is quite specific for Java.

The latter is called ‘Dynamic Loading’; it essentially creates a different software

configuration.

The source of the dynamically loaded code must be trusted. Any new configuration must be

verified. In other words, the system must have a means of verifying a configuration before

actually loading. In particular, the new configuration might have different timing

characteristics; the WCET for a method might be increased by loading an additional subclass.

The transition between configurations makes the system vulnerable. Loading should be

restricted to certain application states or to low priority threads. Loading is a potentially slow

operation with potentially long blocking times.

Note: Dynamic loading will not be considered in detail in this paper.

4.7 Interpretation versus Compilation

In the simplest environment, a Java compiler converts Java source code into Java Bytecode

which then is interpreted by the Java Virtual Machine (VM). Java class libraries can also be

distributed directly as Bytecode. As the Bytecode is standardized, any Java compiler can be

used with any VM.

Many Java development environments also provide a means of compiling Bytecode into

native code for improved speed. This capability comes in two flavors:

• Just in time (JIT) compilation:

Based on execution statistics, the VM decides to compile part of the code while the

application is running. This approach is not suitable for safety-critical applications for

several reasons:

o The need to verify the behavior of JIT compiler.

o The inability to verify the resulting object code.

o The effects of the compilation to the real-time behavior.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 8

• Static compilation:

When the application is built, selected parts of the code are compiled. This preferable

in a verification context:

o The compiler need not be verified because the resulting object code can be

verified

o The real-time performance is highly predictable

Hence, in the remainder of this paper, we disregard JIT compilation.

Compiled code has typically a higher memory demand, with a factor between 5 and 10.

Therefore, only the most time critical methods are usually compiled, striving for a good

balance of execution speed and code size.

 Speed Code size

Bytecode: slow small

Compiled code: fast large

The VM is responsible for actions supporting the synchronization and garbage collection

approach. While it is relatively easy to verify the VM to perform these actions, this is not as

easy with the compiled code. This will be discussed in more detail in section 7.5.

5 Requirements for Real-time Java Implementations

For using Java in real-time applications, an implementation must address two issues.

• Provide precisely define real-time scheduling and synchronization algorithms, thus

avoiding the pitfalls of the original Java specification. Two approaches are available:

o use the Safety-Critical Java subset

accepting severe restrictions on the language (stack-based scoped memory

instead of heap memory, restrictions on thread use), or

o use the Realtime and Embedded Specification for Java ([RTSJ])

enabling full use of Java and even extensions to its capabilities.

• Avoid indeterminate blocking times due to the garbage collector. Simple Java

implementations stop the whole application for a complete garbage collection cycle.

More sophisticated Java implementations execute the garbage incrementally.

Essentially, there are two mechanisms:

o Run the GC in a separate thread with a scheduling scheme that given the GC

enough execution time but does not hinder the application. The GC thread

scheduling parameters have to be adapted for the application.

o Work-based garbage collectors perform garbage collection in incremental

steps. Each time the application allocates memory, the application thread also

executes a specific amount of garbage collection work. The more allocations,

the more GC work is done.

The following table gives an overview of the possible combinations and their properties

regarding the above criteria:

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 9

Java Type Garbage Collection approach

Name
Short

Description
Stop the world

Incremental,

Parallel Threads

Incremental,

Work based

Conventional

Java
OpenJDK like

Undefined

Scheduling

Unacceptable

blocking

Undefined

Scheduling

Undefined

Scheduling

Safety-

Critical

Java

Restricted Java

without GC

Reduced functionality

GC not provided

Realtime

Java

Java with

RTSJ extensions &

Deterministic GC

Unacceptable

blocking

Full functionality

GC threads to be

configured

Full

functionality

GC well

distributed,

easy to

configure

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 10

6 Using Real-time Java with ISO 26262 and DO-332

The ISO 26262-6:2011 standard, section 5.4.6, gives examples of programming languages

which might be used, including Java:

The selected programming language (such as Ada, C, C++, Java, Assembler or a
graphical modelling language) supports the topics given in ...

Three of these languages are object-oriented. Therefore; the intent is clearly that such OO

languages, and in particular Java, can be used.

The standard does not go into details for certification using OO languages or Java in

particular. Requirements/recommendations which have particular implications when using

OO languages are listed below.

• ISO 26262-6:2011, 5.4.6 and 7.4.3, call for abstraction, modularity, encapsulation and

runtime error handling which are well supported by Java. With the real-time

specification, support for embedded real-time software is also covered.

• ISO 26262-6:2011, 7.4.17, calls for upper bounds for execution time and storage

space. While this is not specific for OO languages, it is of particular importance with

dynamic binding and garbage collection.

This requirement maps to DO-332 objective OO.6.3.4f.

• ISO 26262-6:2011, 8.4.4, calls for limited use of pointers in Level D applications.

Java does not use pointers explicitly whereas C and C++ do.

• ISO 26262-6:2011, 10.4.6, requires metrics for the call coverage but does not

explicitly mention dynamic binding. The objective includes demonstrating the absence

of unintended functionality, however. This corresponds to structural coverage

objectives of DO-178C, 6.4.4.2.

• For configurable software, ISO 26262-6:2011, 5.4.3, requires Annex C to be applied.

This is of particular importance when dynamic loading is used.

As the guidance for certification of object-oriented code given in ISO 26262-6:2011 is quite

vague, it is reasonable to compare ISO 26262-6:2011 to DO-178C and DO-332 and then look

for additional guidance in DO-332, since DO-332 provides more detailed guidance for using

object-oriented technology.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 11

6.1 Comparison of ISO 26262-6:2011 to DO-178C

The safety certification standard for avionics, RTCA/DO-178C, provides details for

certification of object oriented programming that are missing in ISO-26262. There is an

entire supplement to DO-178C, called RTCA/DO-332, which covers certification of object-

oriented technology and related techniques. Since DO-178C has a similar general approach to

certification as ISO-26262, it is reasonable to use DO-332 as a reference. Here is a quick

overview of the framework from ISO 26262-6:2011 and DO-178C with DO-332 in a tabular

form:

ISO 26262 DO-178C + DO-332

Targets automotive sector

High-level requirements are derived from the

vehicle

Targets avionic software

High-level requirements are derived from the

aircraft

ISO 26262-6:2011 covers S/W
DO-178C covers S/W

DO-332 is for Object Oriented S/W

Both focus on integrated safety through a defined development process

Recommends actions

Objectives are more implicit

Defines objectives and leaves it to the

applicant to plan actions to achieve the

objectives.

Objectives are comparable

Based on requirements and their verification / test

Functional safety manager role Certification authority (FAA / EASA)

Safety assessment based on artifacts produced during product development

Applies to system, hardware,

and software

Software only

(system and hardware are handled

in other standards)

Applies to production & operation

of the product

Production out of scope

(Covered by other standards)

Defines life cycle phases based on V-Model

Development process not specified.

Suggests waterfall model,

can be matched to V-Model.

Re-use of components based on

field experience

Artifacts for previously developed software

must comply to standards

Both start with requirements that are refined into a design and then an implementation.

Both are based on testing at various integration levels.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 12

The following diagram compares development activities for ISO 26262-6:2011 and DO-

178C:

Figure 6-1 V-model Verification Diagram

Integ
ratio

n

ISO 26262 ISO 26262

DO-178CDO-178C

High Level
Requirements

Design

Coding

Unit Design and
Implementation

Verification of
Safety

Requirements

Integration and
Testing

Unit Testing

So
ft

w
ar

e
V

er
if

ic
at

io
n

 I

n
te

gr
at

io
nArchitectural

Design

Safety
Requirements

Low Level
Requirements

As illustrated by Figure 6-1, the processes are comparable, although DO-178C allows for

more flexibility.

The similarities between both frameworks are strong enough to justify the use of DO-332 as

additional guidance. DO-332 covers certification of object-oriented code (albeit for use in

avionic systems) in much more detail than ISO 26262-6:2011. Not all of the objectives given

in DO-332 are necessarily required for verification according ISO 26262-6:2011. But

applying the more detailed framework of DO-332 seems to cover the ISO 26262-6:2011

objectives. On the other hand, with ISO 26262-6:2011 being quite vague, none of the DO-332

objectives can easily be dismissed, at least for ASIL D.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 13

6.2 Objectives and Activities for Object Oriented Software

The following condensed table is based on the tables given in DO-332, annex OO.C. It contains a subset of the objectives and activities which were

changed in DO-332 with respect to DO-178C, i.e., which are OO specific. Furthermore, the more general objectives for Planning, Quality

Assurance, and Certification Liaison Process are omitted. The middle column in the table provides a short summary of the OO-specific activities

that apply to DO-332. References in the last two columns are to sections below the table.

DO-178C / DO-332 Objectives DO-178C / DO-332

Activities

Short summary of

OO specific Activities
Remarks for application &

Java libraries

Remarks for Java VM and

runtime environment,

including garbage collector

1 Software Planning Process

2 Software Development Process

2-1 High-level requirements are

developed. [5.1.1.a]
5.1.2 (a,b,c,d,e,f,g,j)

OO.5.5.a

Requirements to class methods

should also trace to overriding

definitions in subclasses.

See 6.3 Class Hierarchy, Tracing

and Type Consistency
N/A

2-3 Software architecture is

developed. [5.2.1.a]
OO.5.2.2 (a,d,h,i,j,k,l) h: Class hierarchy

i: locally type consistent

j: strategy for memory

management
k: strategy for exception

management

l: reusing components: derived
requirements & functionality to

deactivate

h, i: See 6.3 Class Hierarchy,

Tracing and Type Consistency

j: See 6.4 Strategy for memory

management

k: See 6.5 Overloading and type

conversion vulnerabilities

l: See 6.7 Reusing components

j: See 6.4 Strategy for memory

management

k: See 6.5 Overloading and type

conversion vulnerabilities

others N/A

2-4 Low-level requirements are

developed. [5.2.1.a]
OO.5.2.2 (a,e,f,g,i)

5.2.3 (a,b)

5.2.4 (a,b,c)

OO.5.5.(b,d)

OO.5.2.2 I: locally type
consistent

OO.5.5.d: traces to overriding

method declarations in

subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 14

DO-178C / DO-332 Objectives DO-178C / DO-332

Activities

Short summary of

OO specific Activities
Remarks for application &

Java libraries

Remarks for Java VM and

runtime environment,

including garbage collector

2-5 Derived low-level requirements
are defined and provided to the

system processes, including the

system safety assessment process.

[5.2.1.b]

OO.5.2.2 (b,c, l) l: reusing components: derived
requirements & functionality to

deactivate

 N/A

2-6 Source Code is developed.

[5.3.1a]
5.3.2 (a,b,c,d)

OO.5.5.c

Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

3 Verification of Outputs of

Software Requirements Process

 OO.11.14, Verification results

include:

Local type consistency

Dynamic memory management

4 Verification of Outputs of

Software Design Process

 OO.11.14, Verification results

include:

Local type consistency

Dynamic memory management

4-8 Software architecture is

compatible with high-level

requirements. [OO.6.3.3.a]

OO.6.3.3 Architecture does not conflict

with HLRs: exception
management and memory

management.

Trace data include traces to
overriding method declarations

in subclasses

See 4.4Exception handling

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

4-9 Software architecture is

consistent. [OO.6.3.2.b]
OO.6.3.3 Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

4-10 Software architecture is

compatible with target computer.

[OO.6.3.3.c]

OO.6.3.3 Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency
N/A

4-11 Software architecture is verifiable.

[OO.6.3.3.d]
OO.6.3.3 Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency
N/A

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 15

DO-178C / DO-332 Objectives DO-178C / DO-332

Activities

Short summary of

OO specific Activities
Remarks for application &

Java libraries

Remarks for Java VM and

runtime environment,

including garbage collector

4-12 Software architecture conforms to

standards. [OO.6.3.3.e]
OO.6.3.3 Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

4-13 Software partitioning integrity is

confirmed. [OO.6.3.3.f]
OO.6.3.3 Trace data include traces to

overriding method declarations

in subclasses

See 6.3 Class Hierarchy, Tracing

and Type Consistency

N/A

5 Verification of Outputs of

Coding & Integration Process

 OO.11.14, Verification results

include:
Local type consistency

Dynamic memory management

5-1 Source Code complies with low-

level requirements. [OO.6.3.4.a]
OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities

N/A

5-2 Source Code complies with

software architecture. [

OO.6.3.4.b]

OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities

N/A

5-3 Source Code is verifiable. [

OO.6.3.4.c]
OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities
N/A

5-4 Source Code conforms to

standards. [OO.6.3.4.d]
OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities

N/A

5-5 Source Code is traceable to low-

level requirements. [OO.6.3.4.e]
OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities

N/A

5-6 Source Code is accurate and

consistent. [OO.6.3.4.f]
OO.6.3.4 Overloading and type conversion

vulnerabilities,

OO.D.1.3.1 & OO.D.1.4.1

See 6.5 Overloading and type

conversion vulnerabilities

N/A

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 16

DO-178C / DO-332 Objectives DO-178C / DO-332

Activities

Short summary of

OO specific Activities
Remarks for application &

Java libraries

Remarks for Java VM and

runtime environment,

including garbage collector

6 Testing of Outputs of

Integration Process

 OO.11.14, Verification results
include:

Local type consistency

Dynamic memory management

OO.11.21, Trace data include

traces to overriding method

declarations in subclasses

6-1 Executable Object Code complies

with high-level requirements.

[6.4.a]

6.4.2

OO.6.4.2.1

6.4.3

6.5

Constructors to properly

initialize object state.

Initial state consistent with class

requirements

See 6.3 Class Hierarchy, Tracing

and Type Consistency

6-3 Executable Object Code complies

with low-level requirements.

[6.4.c]

6.4.2

OO.6.4.2.1

6.4.3

6.5

OO.11.14, Verification results

include:

Local type consistency

Dynamic memory management

See 6.3 Class Hierarchy, Tracing

and Type Consistency

See 7.4.1 Verification of the

Garbage Collector

7 Verification of Verification

Process Results

 OO.11.14, Verification results

include:

Local type consistency

Dynamic memory management

See 6.3 Class Hierarchy, Tracing

and Type Consistency

7-

OO

10

Verify local type consistency

[OO.6.7.1]
OO.6.7.2 See 6.3 Class Hierarchy, Tracing

and Type Consistency

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 17

DO-178C / DO-332 Objectives DO-178C / DO-332

Activities

Short summary of

OO specific Activities
Remarks for application &

Java libraries

Remarks for Java VM and

runtime environment,

including garbage collector

7-
OO

11

Verify use of dynamic memory

management is robust [OO.6.8.1]
OO.6.8.2.

(a,b,c,d,e,f,g)

a: exclusivity

b: allocations succeed when free

memory available

c: memory reclaimed before

needed

d: sufficient memory at any time

e: reference consistency

f: atomic object moves

g: bounded time operations

d, g: See 6.4 Strategy for

memory management

most items are addressed jointly

by application / memory
configuration / runtime &

compiler options and the runtime

environment

a, b, c, e: See 6.4 Strategy for

memory management

F: N/A

See 7.4.1 Verification of the

Garbage Collector

8 Software Configuration

Management Process

9 Software Quality Assurance

Process

10 Certification Liaison Process

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 18

6.3 Class Hierarchy, Tracing and Type Consistency

The class hierarchy must be developed based on the high-level requirements.

Class constructors must properly initialize objects; the initial state must be consistent with the

requirements for the class.

Low-level requirements tracing to class members must also trace to the overriding members

in all subclasses. For example, given a low-level requirement 1 that applies to method foo in

class A and class B is a subclass of A which overrides foo, requirement 1 applies to both

A.foo and B.foo. Both A.foo and B.foo must refer back to requirement 1, though B.foo may

have additional requirements that do not apply to A.foo.

The testing strategy must verify local type consistency. This can be done by applying tests for

a superclass to all of its subclasses. Formal methods can also be used to show that overridden

methods conform to the requirements of all methods overridden.

This is a responsibility for the application and the class libraries.

See DO-332 OO.1.6.1.2, OO.D.1.1.3.

6.4 Strategy for memory management

With Java, most of the dynamic memory management aspects are covered by the runtime

environment, which provides an exact garbage collector. Most decisions regarding dynamic

memory management are implied by selecting Java as programming language and by

selecting a specific Java implementation. In DO-332, this dynamic allocation with exact

garbage collection for recycling memory is referred to as automatic heap allocation.

The verification results should describe how the chosen Java implementation supports the

overall goals of the application and how it matches the high-level requirements. This applies

in particular to the real-time properties of the garbage collector and how it affects the timing

of the application.

Application designers must determine the maximum amount of memory used by the

application; the heap size must be set to a value such that the used memory never exceeds a

selected fraction of the heap size. That fraction determines the allocation overhead for

garbage collection for that application. In other words, an application which requires more

memory must have a larger absolute overhead to maintain the same fractional overhead.

These items from DO-332 OO.6.8.2 are then addressed as follows:

• a: exclusivity

e: reference consistency

These items are granted by the GC approach. Memory is only reused after the GC

determined there are no references to the piece of memory to be reused.

• b: allocations succeed when free memory is available

In general, the Java implementation is responsible for avoiding heap fragmentation,

e.g. by moving objects.

For JamaicaVM , this item is granted by the distributed object model which avoids

fragmentation issues at the time of allocation.

• c: memory reclaimed before needed

This is granted by the GC approach provided the application does not use more than

the selected fraction of the heap size.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 19

• d: sufficient memory at any time

The application must not use more than designed amount of memory. Typically, the

heap size is set to a larger value and the application must not use more than a selected

fraction of the heap size.

• f: atomic object moves:

The GC is responsible for moving objects.

For JamaicaVM , this is not applicable because objects are never moved with

JamaicaVM.

• g: bounded time operations:

This would be a problem for non-real-time Java implementation, due to the

unpredictable timing of the garbage collector.

For real-time Java, allocation itself is a constant time operation. The amount of time

spent with garbage collection (GC overhead) is determined by the GC parameters.

The situation can also be described in a table, similar to the one from OO.D.1.6.3:

Technique
Activities (DO-332 OO.6.8.2)

a b c d e f g

Object

pooling
X X X X X N/A OK

Stack allocation

X OK OK X X N/A OK

Scope allocation

OK OK OK X X OK OK

Manual heap allocation

X X* X X X N/A OK

Automatic heap allocation OK OK OK X OK OK OK

RT Java with

JamaicaVM
OK OK OK X OK N/A OK

With the entries meaning:

X = to be addressed by the application

OK = addressed by memory management infrastructure

N/A = not applicable,

* = difficult to ensure by either application or memory management infrastructure

Clearly, the automatic heap allocation with garbage collection puts the least burden on the

application side.

Note that with JamaicaVM, fragmentation and atomic moves are not an issue, due to non-

contiguous object allocation. Furthermore, the work based GC algorithm shows graceful

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 20

degradation: if the application uses slightly more than the designed heap fraction, the time

used for incremental garbage collection is slightly increased.

See DO-332 OO.D.1.6 for more details.

Java also uses stack allocation, but JamaicaVM only uses this for local variables. The sizes of

runtime stacks for each thread have to be determined as for any other programming language.

Stack overflow is detected automatically by the JamaicaVM runtime causing an exception to

be thrown.

6.5 Overloading and type conversion vulnerabilities

Overloading ambiguity occurs when implicit type conversions occur when selecting an

acceptable match. This could lead to unintended best match selection by the compiler. For

Java, boxing and unboxing conversions as well as the use of variable arity methods have to be

considered.

Different programmers might unintentionally choose the same name for semantically different

operations.

Coding standards should address the issues listed in DO-332 OO.D.1.3.3.

This is a responsibility for the application and the class libraries.

See DO-332 OO.D.1.3.1, OO.D.1.4.1, OO.D.1.3.3.

6.6 Strategy for exception management

The mechanisms to throw, propagate and catch exceptions are defined by the Java

programming language.

The verification results should describe how the chosen Java implementation supports the

overall goals of the application and how it matches the high-level requirements.

The coding guidelines should describe in which situations exceptions should be used and in

particular, where exception handlers should be placed (and where not). This is important for

the timing behavior of the application. Exceptions are part of the class requirements and must

be included in the verification of type consistency.

There is a particular issue with exception handling regarding timing that can be illustrated by

an example:

If an application works with a container which might become empty, it can test

whether the container is empty before trying to retrieve an element. As an alternative,

it can just try retrieving an element and catch the exception thrown in case the

container was empty.

Functionally, both schemes work fine, but the timing might be quite different:

• The test for an empty container is usually an operation with a small and easy to

determine execution time.

• Throwing and catching an exception can be much slower and the execution time is

harder to predict. The execution time might even be influenced by non-local

properties.

 With JamaicaVM, the overhead of throwing an exception is determined by

creation of the exception object and the search for the corresponding handler. Unless

preallocated exception objects are used, creation of an exception requires allocation

for the exception object itself, and of the stack trace that is stored in the exception and

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 21

depends on the call depth when the exception is created. The search for an exception

handler is determined by the number of the stack frames to be removed until the

exception handler is found, see [HRTGC] 10.3.3.

With the exception approach, the average execution time for accessing an element might be

smaller; the worst case execution time is likely to be worse, however. In Java, it is not

possible to remove all exception handling, but one must understand their effect on WCET. In

general, exceptions should be used sparingly, where code readability considerations

overweigh the extra time required for generating an exception in the case of failure.

6.7 Reusing components

Reuse of components typically applies to class libraries, be it libraries defined in the

application domain or those belonging to the Java runtime environment.

Only Java libraries which come with verification artifacts should be considered as

components; in other words, libraries where requirements and a complete set of

corresponding tests are available. Other libraries have to be treated like parts of the

application.

The following issues should be addressed, for more details, see DO-332 OO.D.2.3.1.

a. Components developed outside the system context might not fully satisfy the intended

functionality or they may provide more functionality than needed.

b. Life cycle data may be developed to different standards.

c. Error management for components might follow a different policy than required by

the system. Wrappers might be needed. See also section 6.6.

d. Resource management might be different (heap, stack, processor cycles, and

synchronization).

• Memory management:

As Java includes a complete, exact garbage collector, stack and heap management

are addressed within the runtime environment. The stack and heap usage by the

component must nevertheless be documented.

• Execution time:

Unless the component was verified in the Java environment, timing information is

likely to be missing or to be inadequate, due to the work-based GC approach. Even

if provided, execution lime limits for the component might be specified in a form

which is incompatible with the approach selected for the application.

e. Presence of deactivated code: Parts of the reused component might not be needed in

the given system.

f. Integration testing, including data coupling analysis and control coupling4 analysis

may be difficult without internal knowledge of the component.

The reused component may be available as source code, Java Bytecode or as object code. If

source code is not available, this makes the analysis more complicated. This affects in

particular item f above; the timing analysis is also affected.

4 ISO 26262-6:2011 does not use the term “control coupling”, but it requires metrics for the call coverage.

Full call coverage implies that all possible calls have been verified, which means control coupling was

verified.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 22

Though integration testing is always required, other retesting can only be avoided where the

same object code or the same bytecode and interpreter are used. For static compilation, this

means compiling the same set of methods with the same settings and interpreting the

remaining set. WCET is dependent not only on the hardware, but also what code is compiled

and what code is interpreted. Technically, it is possible to extend the class hierarchy by

introducing application-specific subclasses of classes defined within reused components.

First, this requires a good understanding of the component, including access to source code

and documentation. Second, it requires special attention when verifying the class hierarchy

and type consistency as described in section 6.3.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 23

7 Verification with JamaicaVM

This section describes what’s to be done when using JamaicaVM, taking into account the

specific implementation details.

Note that this section does NOT list all those activities which are required regardless of the

use of Java. We assume the reader to be aware of the verification activities applicable for

non-object-oriented implementations, e.g. using the C programming language.

7.1 Verifying JamaicaVM Applications

Coding guidelines must be established, in particular covering the aspects from sections 6.5

and 6.6.

Verify the class hierarchy and type consistency as described in section 6.3.

For compiled parts of the application, the issues described in section 7.5 apply.

7.1.1 Storage Requirements

Establish a scheme to determine boundaries for storage requirements. Define the required

heap size and the minimum amount of unused heap memory.

The JamaicaVM environment provides tools for measuring the memory usage.

Consider monitoring the storage used and define the behavior of the application in case the

storage limit should be exceeded.

7.1.2 Execution Time Limits

Establish a scheme to determine boundaries for execution time:

• Will the execution time be calculated or measured?

• Will it be determined for the application as a whole, per subsystem or at a method

level?

• How will the variability of execution times for overridden member methods in a class

hierarchy be accounted for?

Worst case execution times can be considered as post-conditions. The LSP implies

that subclasses cannot exceed the timing limits defined for their superclass. This might

not apply strictly for all class hierarchies and using this approach implies the WCET is

specified on the function level.

Decide whether the GC overhead will be configured statically or adjusted dynamically.

Make sure any time measurements are done in a configuration with worst case garbage

collection overhead; even if the application is going to dynamically adjust the GC overhead to

the heap usage, measurements should be made with a static setting corresponding to the

situation with maximum expected heap usage.

JamaicaVM supports two array layouts: linear (contiguous) and tree arrays. For arrays that

are not pre-allocated, time measurements should be made with the optimization for

contiguous array allocation switched off. This optimization depends on being able to allocate

an array in a contiguous set of -blocks in memory, which cannot be guaranteed, in particular

after the system has been running a long time and memory is nearly exhausted. See [HRTGC]

7.3.3.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 24

7.1.3 Exception handling scheme

Establish a scheme for exception handling, including the consequences of exceptions

regarding execution time, as discussed in section 6.6.

The scheme to be used must be compatible with existing class libraries to be used. So, in

practice, there may be little choice.

Even if rarely expected in safety-critical Java code, specify whether the code is expected to be

executable with runtime checks suppressed.

7.1.4 Guaranteed response times

Establish a scheme to guarantee required response times. Select the compiler and runtime

options to match the expected response times.

A real-time Java implementation must ensure that the garbage collector does not interfere

with the running program and that changes by one are seen immediately by the other. This

can be done either with locks and read barriers or with well-defined synchronization points.

In general, using synchronization points is more efficient for a very small latency penalty.

JamaicaVM restricts garbage collection and scheduling actions to so-called synchronization

points. At these synchronization points, the heap must be in a consistent state, allowing for

incremental garbage collection by other threads. Between synchronization points, there is no

need to guarantee the GC invariants and there is more opportunity for optimizations. The

distance between synchronization points is such that the time to run from one to the next is

much smaller than the time for the OS to switch contexts.

Clearly, the maximum distance between synchronization points is critical for response times:

• The JamaicaVM bytecode interpreter inserts synchronization points at defined time

intervals.

• The JamaicaVM garbage collector is interruptible between the processing steps for

memory blocks, due to explicitly programmed synchronization points.

• For compiled code, be it application code or libraries, the JamaicaVM compiler inserts

synchronization points5. See also section 7.5.

Figure 7-1 illustrates the difference between interpreted and compiled code.

5 The application can select the distance between sync points. If the value is different from the one which

was assumed when compiling libraries (and the one implemented in the VM, see 7.4), the larger value

determines the responsiveness of the application as a whole. See jamaicavm_8.0_manual, section 14: Option -

threadPreemption=n

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 25

Figure 7-1 Synchronization points in interpreted versus compiled code

Byte Code

Byte Code
(modify heap)

Byte Code
(modify heap)

Byte Code

Byte Code

Java Application
Bytecode

Java VM Java Application
compiled

Fetch next Bytecode

Interpret Bytecode:

If heap is modified:
execute write barrier

Copy refs to root array

fetch

Synchronization Point

Interpreter loop

Instruction

Instruction

Instruction

Write Barrier

Copy refs

Synch Point

Instruction

Write Barrier

Copy refs

Synch Point

Instruction

Instruction

Instruction

Write Barrier

Copy refs

Synch Point

Instruction

Fixed number of
occurrences in

Interpreter to be
verified Multiple

occurrences to
be verified

Depending on
application size

Instruction

Instruction

Write Barrier

Copy refs

Synch Point

Instruction

. . .

. . .

. . .

Byte Code
(modify heap)

Byte Code
(modify heap)

Byte Code

Byte Code

. . .

7.1.5 Interoperability between application code and libraries

With JamaicaVM, there are several compiler and runtime options which affect the overall

properties of the resulting application. The interaction of these options must be understood.

The application defines the parameters for the garbage collector, in particular the maximum

fraction of the heap size used by the application and the amount of GC overhead per

allocation. This must be taken into account when determining the execution time of library

functions.

If library code is interpreted rather than compiled, changes in runtime options will also affect

library code (its execution time, in particular).

7.1.6 Interoperability with Native Code

Java enables the use of native code, written in programming languages like C. This causes a

couple of problems regarding memory management, as the native code cannot be expected to

cooperate with the garbage collector like the Java code does. Hence, native code must not

access any memory which is subject to garbage collection except through functions defined

by the Java Native Interface, JNI. Any memory allocated by native code must be separate

from the heap used by Java. Furthermore, native code will have different behavior regarding

scheduling than Java code: native code will not include explicit synchronization points.

JamaicaVM supports JNI, which does not allow direct access to Java memory; any access has

to be performed through calls of JNI routines. With JamaicaVM, native code is executed in

parallel to Java threads, with scheduling enabled.

Thus, the execution time of native code does not affect the response time of the application,

nor does it interfere with the garbage collector. See [HRTGC] 5.8.2.

7.2 Verifying Third Party Libraries

Libraries which are delivered with verification artifacts according to the applicable standard

and the required safety level can be considered as components as described in section 6.7.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 26

Other libraries must be verified together with the application, the previous section applies.

The following additional issues should be considered:

• If libraries are delivered without source code, creating verification evidence is quite

difficult, if not impossible.

• If source code comes with legal restrictions, it becomes more difficult to remove

unused parts (in order to reduce cost) or to correct issues found during verification.

• Missing documentation about the internals of the library makes verification more

difficult.

• Verifying third party code is more difficult than verifying your own code.

7.3 Verifying the JamaicaVM Libraries

The term JamaicaVM Libraries is herein used for libraries provided with the JamaicaVM

development environment for which aicas is willing to assume responsibility for creating

verification artifacts. What this library contains must be defined for each project. Other

libraries should be considered as third-party libraries, even if provided with JamaicaVM.

A subset of the available libraries must be selected and verified.

Coding guidelines must be established, in particular covering the aspects from sections 6.5

and 6.6.

Verify the class hierarchy and type consistency as described in section 6.3.

In contrast to third-party libraries, there is a better chance to provide useful timing

information which can be integrated into the timing analysis of the application. However, the

current approach is to leave timing to the application.

The current approach is to let the user decide which parts of the code are compiled. In case the

object code is also delivered with JamaicaVM, the compiler options used to compile libraries

must not introduce compatibility problems with applications. It may be possible to provide the

binaries for libraries for a limited number of variants, with different compiler option settings

and to allow the application developer to select the best-suited variant.

For compiled parts of the libraries, the issues described in section 7.5 apply.

7.3.1 Storage Requirements

Establish a scheme to determine boundaries for storage requirements. For libraries, this must

be done in a way such that the application developers can integrate the results into their

environment:

• Provide formulas to calculate the storage requirements, or

• Provide information how to measure the maximum storage requirements.

7.3.2 Execution Time Limits

Establish a scheme to determine execution times. For libraries, this must be done in a way

such that the application developers can integrate the results into their environment:

• Provide formulas to calculate the execution times, or

• Provide information how to measure the maximum execution times.

In particular, the influence of the GC overhead per allocation needs to be addressed.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 27

7.3.3 Exception handling scheme

Establish a scheme for exception handling, including the consequences of exceptions

regarding execution time, as discussed in section 6.6.

For new development, the decisions made here must not unduly restrict the exception

handling approach used by applications. Class interfaces should be designed to allow using

them without being forced to work with exception handlers for normal operations. Exceptions

should only be used for handling situations that represent real errors. See the example given in

section 6.6.

For the vast majority of classes delivered with JamaicaVM, there is no option to change the

class interface design, but the interface of the Java standard edition class libraries is used

exactly as is done by OpenJDK, etc. Hence, application designers must adapt their exception

handling strategy accordingly.

7.4 Verifying the JamaicaVM Runtime Environment

The runtime environment, namely the JamaicaVM, consisting of the Java interpreter, the

garbage collector, the class loader and the support code, need to be verified as any software

included in a safety-critical system. Here, we concentrate on the specific requirements

affecting memory management and real-time characteristics:

(1) Insertion of synchronization points.

(2) Insertion of write barriers.

(3) Copying references from stack to root arrays.

In support of point (1), the Java interpreter contains code to execute a synchronization point

after executing every single bytecode. All other code in the runtime environment, including

the garbage collector, contains synchronization points which make sure the time between

executing synchronization points never exceeds the designed limit. Every allocation (new

instruction) contains a synchronization point. Figure 7-2 illustrates a method of implementing

synchronization points. This limit needs to be precisely documented6. The intent is to make

the limit small compared to the context switch time. Since context switch time also varies

with the CPU speed, the limit in terms of maximum number of instructions can be fixed. In

any case, it is not application dependent.

It seems feasible to create a relatively simple tool which partially verifies this property on the

object code, pointing out the locations where synchronization points might be missing, or

where a manual analysis is necessary. Such a tool could also be used to verify the compiler

output, see section 7.5.

6 The distance between synchronization points within the runtime system, including the interpreter, cannot

be changed easily; it is fairly small, but platform dependent. Assuming that all applications will contain

code which is interpreted, it does not make much sense to use a different limit for compiled code.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 28

Figure 7-2: Placing Synchronization Points into the compiled code

The VM is responsible for implementing items (2) and (3). No attempt is made for

optimizations, as interpretation of Bytecode is relatively slow anyway. Any code in the

runtime environment that deals with references into the heap must also be verified to adhere

to the protocol.

7.4.1 Verification of the Garbage Collector

The verification of the garbage collector is not much different from other code of the runtime

environment.

The properties of the garbage collector regarding correctness of the GC algorithm (e.g. GC

invariants) become functional requirements. The most interesting aspect seems to be the

garbage collector progress. The claims made in [HRTGC] 9.5 need to be transformed into

high-level requirements and verified using the material present in [HRTGC], taking into

account that the implementation has been optimized since [HRTGC] was written.

7.5 Verification of Compiler Output

When Java Bytecode is compiled rather than interpreted by the Jamaica VM, the compiler

takes over the responsibility for requirements (1), (2) and (3) as listed in section 7.4.

Figure 7-3 shows the simplified structure of the JamaicaVM compiler, ignoring the rest of the

builder. The white boxes represent third-party tools. The orange part is for purely interpreted

Java Bytecode; the blue part is the Java compiler. The green part is about verification; the

dashed part does not currently exist, it is just a proposal.

Synchronization

Point (SP)

New

(w/SP)

Loop

Header

Return

Instruction

tructioni

Branch

Instruction

tructioni

Loop

Instruction Stream

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 29

Figure 7-3: Certifying the Output of the Compiler7

Jamaica CompilerJamaica Compiler

Java Source Code
Application &

Libraries

Java bytecode

Java Compiler
E.g. JDK

bytecode Loader

Java VM contains
Sync Points

Write Barriers &
Copies refs from stack

-> root array

Front End inserts:
Sync Points

Write Barriers
copy stack -> root array (optimized)

C Source Code

Verifier
Checks Sync Points

Might check Write Barriers
Checks copy to root array

Back End

Intermediate code

C Compiler
E.g. gcc

Object code
Calls between

Interpreted code &
Compiled code

Verifier for object code
Checks Sync Points

Checks Write Barriers
Checks copy to root array

Java Byte Code
For libraries

Dynamically loaded

Runtime environment
(including GC)

Contains Sync Points

Intermediate code

Optimizer

Addition info
for verification

The compile chain currently works as follows:

• Java source code is compiled into Bytecode with any Java compiler. This step is not

aware of the JamaicaVM runtime environment.

• The front end of the JamaicaVM compiler transforms Java Bytecode into Intermediate

Code, implementing requirements (1), (2), and (3).

• The intermediate code is optimized, in particular regarding implementation of (3).

• On the intermediate code, several checks are performed regarding (1), (3).

• The back end of the JamaicaVM compiler then transforms intermediate code into C

source code.

• The C code is compiled with a COTS C compiler (gcc). The verification of the

compiler is not required (and not considered feasible).

Even if the Intermediate Code is fully verified, the last two steps could theoretically introduce

errors.

It is an open issue to decide whether the verification performed on the Intermediate Code is

sufficient and can be qualified under the requirements of ISO 26262-6:2011. What is the tool

confidence level of the compiler chain in general and for the verification of the three

requirements discussed here in particular? While many errors in the compiler tool chain can

7 Dotted lines represent elements still to be done.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 30

be detected by requirements-based testing of the resulting object code, the issues listed below

are much harder to test:

• A missing synchronization point would just increase the latency for context switches.

• An error in inserting write barriers or copying references from the stack to root arrays

would result in a memory management error, which may (but often will not) lead to

deallocation of an object still in use. This is hard to find through testing; if an error is

detected, it still remains unclear which piece of code is incorrect.

Essentially, there are two ways to approach the verification of requirements (1), (2), and (3):

• Create a convincing argument for trusting the requirements are still satisfied by the

object code.

• Develop a tool that can verify the above issues by analysis of the object code, possibly

helped by additional data from the verification on the intermediate code.

Note that a verification tool for (1) would also help in the verification of the runtime

environment.

A compiler which directly compiles Java Bytecode into object code is planned. Ideally, this

compiler would include a verification step working on object code.

8 Potential Problems

See [HRTGC] 10 for more issues not addressed by ISO 26262-6:2011 or DO-332.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 31

9 Conclusion

The OO aspects of Java require OO specific verification activities as for any OO language, as

expected.

A lot of libraries are available, from third parties as well as delivered with the Java

implementation in use. In any case, using these libraries requires planning for their

verification and the integration of the verification artifacts into the application’s evidence.

The use of a garbage collector makes life relatively easy from an application perspective. The

major part of the verification effort for memory management is shifted to the implementation

of the Java runtime environment.

When Java is used for real-time applications, a deterministic timing behavior is required,

including a defined response time to external events. This is addressed by using:

• The semantic refinements and additional APIs of the Real-time and Embedded

Specification for Java ([RTSJ]).

• A real-time garbage collector, providing incremental garbage collection and a defined

response time, as included in JamaicaVM.

Verifying the Java bytecode interpreter and the garbage collector is not particularly difficult.

The most difficult part is the verification of the ‘global’ requirements, which support the GC

strategy and the real-time behavior and apply to all Java code. For interpreted code, the

interpreter takes over this responsibility; the verification is relatively straight forward. For

compiled code, the verification is harder to accomplish, the compiler might have to be

adapted. Although section 7.4 is specific for JamaicaVM, other real-time Java environments

are expected to have similar requirements.

The following steps need to be addressed

• Verification of the runtime environment, including

o the Java Bytecode interpreter (virtual machine) and

o the garbage collector

o the class loader

• Determine a strategy to verify compiled code regarding the ‘global’ requirements.

o Can we trust the compiler?

o Is a checking tool feasible?

• Define set of Java libraries to be used by applications

o Who is responsible for their verification?

Further work needs to be done to investigate dynamic class loading and using multicore or

multiprocessor platforms.

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 32

Appendix A Acronyms

API Application Programmers Interface

ASIL Automotive Safety Integrity Level

CPU Central Processing Unit

COTS commercial of-the-shelf

EASA European Aviation Safety Agency

FAA Federal Aviation Administration

GC garbage collector

HRTGC Hard Real-time Garbage Collection

JNI Java Native Interface

JIT Just in time (compilation)

LSP Liskov Substitution Principle

OO Object Oriented / Object Orientation

PDS Previously Developed Software (a DO-178C term)

RTSJ Real-time and Embedded Specification for Java

RTOS Real-time Operating System

SP Synchronization Point

VM Virtual Machine

WCET worst case execution time

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 33

Appendix B Example for OO paradigm implemented by switch

In a hierarchy like the one given in Figure B-1, the inheritance mechanism will make sure that

each subclass provides all four operations.

Figure B-1 Example Hierarchy

+Open()
+Close()
+Read()
+Write()

Protocol

+Open()
+Close()
+Read()
+Write()

TCP

+Open()
+Close()
+Read()
+Write()

UDP

Example Hierarchy

The above could be implemented directly in an OO language like Java.

In an equivalent C implementation, the distinction between protocols will be expressed by a

switch construction like the one shown in Figure B-9-2:

Figure B-9-2 Implementation by switch construct in C

void open ()
{
 switch (protocol_type)
 {
 case UPD:
 {
 /* handle UDP */
 }

 case TCP:
 {
 /* handle TCP */
 }

 default:
 {
 /* handle errors */
 }
 }
}

void write ()
{
 switch (protocol_type)
 {
 case UPD:
 {
 /* handle UDP */
 }

 case TCP:
 {
 /* handle TCP */
 }

 default:
 {
 /* handle errors */
 }
 }
}

void read ()
{
 switch (protocol_type)
 {
 case UPD:
 {
 /* handle UDP */
 }

 case TCP:
 {
 /* handle TCP */
 }

 default:
 {
 /* handle errors */
 }
 }
}

void close ()
{
 switch (protocol_type)
 {
 case UPD:
 {
 /* handle UDP */
 }

 case TCP:
 {
 /* handle TCP */
 }

 default:
 {
 /* handle errors */
 }
 }
}

The switch constructs in all functions have to be maintained and kept consistent. When a new

operation is added, it must support all existing protocols. When a new protocol is added, all

Using Java in Safety-Critical Applications

Java_Safety_Critical Copyright  2017 VEROCEL GmbH Page 34

operations must be adapted. The latter also makes configuration control harder; adding a new

protocol must not introduce errors in existing protocols.

In either implementation, we must verify that all protocols behave consistently.

