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1 Abstract 

This document provides an analysis of the concerns with using Java, in particular real-time 

Java, in safety-critical applications. The focus is on hard real-time applications subject to 

certification based on ISO 26262.  Both safety and timeliness are considered. 

As ISO 26262-6:2011 is not specific on activities regarding object-oriented (OO) languages, 

this document refers to guidance provided for real-time applications in avionics, which have 

similar certification requirements.  The avionics standard RTCA/DO-178C has an entire 

supplement on object-oriented technology and related techniques called RTCA/DO-332. DO-

332 is used in this document to supplement the lack of detail for object-oriented technology in 

ISO 26262. 

Furthermore, this document outlines a road map of necessary activities for using the aicas 

JamaicaVM implementation of real-time Java in a safety-critical environment. 

2 References 

• ISO 26262-6:2011 (E)  

Road vehicles — Functional safety,  

Part 6: Product Development at the Software Level 

• RTCA/ DO-332, Object-Oriented Technology and Related Techniques Supplement to 

DO-178C and DO-278A; RTCA, Inc., December 13, 2011 

• [HRTGC] 

Hard Real-time Garbage Collection in Modern Object-Oriented Languages: Fridtjof 

Siebert, aicas GmbH; 2002 

• Java 

The Java® Language Specification Java SE 8 Edition; Oracle America, Inc. and/or its 

affiliates; 2015 

• [RTSJ] 

Real-time and Embedded Specification for Java; Editor James J. Hunt, aicas GmbH 

Version 2.0, Draft 59, General Relativity Edition, March 20, 2017 

• [SCJ] 

Safety-Critical Java Technology Specification, JSR 302, Editor Doug Locke, Version 

0.110, Draft, February 2, 2017 
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3 Introduction 

Though conventional Java is fine for applications that do not have a time bound, i.e., do not 

have real-time requirements, it should not be used for control applications. Therefore, this 

study confines itself to real-time Java.  Real-time Java is defined as a Java implementation 

that conforms to the RTSJ specification and has a real-time garbage collector (GC). 

Certification of real-time Java requires surmounting a number of challenges that procedural 

languages do not have.  These challenges are identified below, along with a means of 

overcoming them.  Since certification can only be done on a specific real-time Java 

implementation, the JamaicaVM has been chosen for this purpose.  This means the study must 

address issues that are specific to JamaicaVM.  This is rounded out with a proposal for 

verifying applications that run on JamaicaVM and its runtime environment, with special 

emphasis on memory management systems. 

This study does not distinguish between safety levels; rather it assumes the highest assurance 

level: ASIL D. 

Although there is ongoing work on specifying Safety-Critical Java, it was not considered here 

for three reasons.  First, the specification is not yet complete. Second, it would severely 

restrict the language, as only a small number of standard classes are available. Finally, it only 

supports scoped memory, as stack-like memory management technique, which also severely 

restricts what Java libraries can be used.  These restrictions drastically limit the compatibility 

with conventional Java, which is deemed unacceptable for the scope of this paper.  Instead, 

the semantic refinements and additional APIs of the Real-time and Embedded Specification 

for Java ([RTSJ]) are considered as providing the extensions necessary for real-time response. 

4 What is different with Real-time Java? 

There are several differences between Java, both conventional and real-time, and procedural, 

such as C and Ada, that are usually used for safety-critical applications.  Each of these is 

addressed in turn in this paper. Since C++, another object-oriented language is also 

considered appropriate for safety-critical applications; a comparison is also drawn with C++, 

highlighting pros and cons.  

4.1 General aspects of OO 

The OO paradigm is an excellent approach to mastering the complexity of applications. The 

idea of classes and object was designed to help reduce coupling between different parts of a 

system.  The issues discussed below are essentially due to application complexity rather than 

due to the OO approach itself.  

Note that these issues might even apply when OO paradigms are used for applications 

implemented in C where the dynamic binding is ‘hand-crafted’, using pointers to functions or 

switch/case constructions.  

When an application needs to distinguish between different actions, an OO implementation 

will express this with a class hierarchy and dynamic binding.  In a non-OO approach, the 

actions would be selected by equivalent switch/case construction or by using function 

pointers; OO is simply a more systematic approach which makes the need for consistency 

obvious in the class hierarchy. See the “Example for OO paradigm implemented by switch” 

provided in Appendix B. 
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4.1.1 Class Hierarchy 

The class hierarchy must be consistent. While the language semantics make sure that any 

operation defined in a class is also available in all subclasses, the designer of the class 

hierarchy must make sure these operations are semantically consistent regarding pre-

conditions and post-conditions in accordance with the Liskov Substitution Principle (LSP) 

(examples are also given in DO-332 or found in Wikipedia). In short, the Liskov Substitution 

Principle requires the following: 

• Pre-conditions cannot be strengthened in a subtype; 

• Post-conditions cannot be weakened in a subtype; and 

• invariants of the supertype must be preserved in a subtype. 

Adherence to the above criteria requires systematic testing (or analysis of the hierarchy). 

4.1.2 Dynamic binding 

Object-oriented applications typically make heavy use of dynamic binding, because using a 

class hierarchy without dynamic binding does not exploit the powers of OO.  Thus, when 

looking at the source code, one does not know exactly which member function is being called. 

This makes the analysis of the source code more complicated, even for calls where only a 

single implementation is available, dynamic binding will often be used. 

Even when the implementation of the class hierarchy is shown to be consistent, adhering to 

the LSP, the execution time can vary between different implementations of the same 

operation. This makes it harder to specify the execution time of operations in class 

hierarchies.  Since dispatching is used instead of branching across various types, internal 

variation is replaced with variant across the methods that can be called as a result of the 

dispatch. 

The coverage analysis for dynamically bound method calls should also demonstrate the 

correctness of dispatch tables. 

Invoking interface methods requires a search process because of possible multiple 

inheritance1. The search process makes the determination of the execution time more 

complicated.  In general, the dispatch time is proportional to the number of interfaces a class 

implements.  This call overhead can be measured for common cases. 

4.2 Memory Management 

Java is a language which heavily relies on dynamic memory allocation and includes a garbage 

collector. Historically, safety-related applications have used little or no dynamic memory 

management (except for executions stacks which are well understood and easy to manage). 

Before going into details for Java, here are the possible levels of dynamic memory 

management: 

• Using no dynamic memory allocation at all (or only during initialization). 

From a safety perspective, this is clearly the easiest way. But it severely restricts the 

application.  

                                                 

1 Note that the implementation described in [HRTGC] 10.3.1.3 is NOT implemented in the current version 

of Jamaica. A linear search is performed, i.e., for an instance of a class that implements n interfaces, there 

are at most n comparisons to find the method table that corresponds to this interface. This n is typically 

small (1 or 2) and easy to determine for every class. 
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• Specialized memory management by the application. 

Most non-trivial applications need at least some dynamic memory management. 

Often, memory is pre-allocated in pools of objects of the same size and the application 

manages these pools explicitly (Object Pooling). This avoids the general problem of 

heap fragmentation; but when a pool exists for each object size, with dynamically 

sized objects like strings, this is impractical. But, it requires many object pools to be 

sized correctly. In fact, there is also fragmentation because free memory in one pool 

cannot be used by allocations for another pool.  It is also susceptible to a program 

releasing an object too soon or not at all, which can result in object corruption or 

memory exhaustion respectively. 

• Heap management by the application. 

Allocations and deallocations from the heap are performed under control of the 

application. While allocation is relatively easy to manage, it is often quite hard for 

applications to decide when a piece of memory can be deallocated. Errors in the 

deallocation are frequent and hard to find. The consequences of error in deallocation 

are either memory leaks or references to memory which is already used for a different 

object, with hard-to-predict consequences. 

Heap fragmentation is still an issue resulting in varying time required for allocation 

and deallocation. 

• Implicit heap management by the runtime environment (garbage collection). 

Allocations are either explicit by the application or implicit through the use of certain 

language constructs. Deallocations are always implicitly performed by the garbage 

collector. The big advantage is that the application is freed from the burden of 

deciding when to deallocate an object2. The garbage collector is part of the runtime 

environment; it must be verified only once and can be used for many applications. 

Typically, the garbage collector also implements a solution for heap fragmentation. 

 

The following issues arise with dynamic memory allocation: 

• Time required to allocate / free memory: 

o With Object Pooling, this is generally not an issue; the operations can easily be 

performed in constant time. 

o When using a common heap, whether managed by the application or the 

garbage collector, this is generally not the case. The allocation strategy 

determines the complexity of the operations.  

o When using a garbage collector, the time required for garbage collection is 

non-deterministic. First, it reduces the execution time remaining for the 

application. Second, there is typically some need for synchronization between 

the garbage collector and application code, which introduces a blocking time. 

This increases the latency for reactions to external events by the application. 

• Out-of-memory conditions: 

Allocations can fail if no more memory is available. Application designers must 

                                                 

2 Sometimes, applications can help the garbage collector by explicitly overwriting object references with 

NULL, so the garbage collector can deallocate the object. But such actions are easier to verify than the 

actual deallocation. In particular, a runtime error would be detected should the application erroneously try 

to use such a NULL reference. 
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estimate the memory usage of the application and design the application to react to 

failures of memory allocation. 

• Fragmentation: 

Fragmentation describes the situation where unused memory cannot be used to satisfy 

application requests. It occurs when many small pieces of memory are free but none of 

them is large enough to satisfy a request. This form typically occurs when using a 

common heap.  

With object pooling, there is no fragmentation within a pool. But there is a similar 

problem when one pool is exhausted and memory from other pools cannot be used. 

With many pools, it becomes difficult to size each pool properly without wasting too 

much memory.  

• Premature Release: 

No object for which a reference exists3 may be released to the free list.  This is part of 

the job of the garbage collector, to release only objects that are no longer referenced. 

For object pooling, this must be demonstrated for each application because returning 

objects to the pool is the job of the application. 

• Memory Leak: 

A memory leak happens when the last reference to an object is dropped but not freed.  

In a garbage collected system, this is a condition under which an object is eligible for 

being collected, but for other techniques such as pooling this will eventually cause the 

program to run out of memory.  This should not be confused with object hoarding, 

which is similar: an object is not lost, but a reference is maintained after it is no longer 

needed. 

Java was designed for using an automatic garbage collector: there is no explicit use of 

pointers, each “new” operation allocates memory and there is no explicit deallocation feature. 

This makes it possible to implement an exact garbage collector, which can give guarantees to 

detect free memory. For languages like C and C++, garbage collectors cannot be exact due to 

language properties. An exact garbage collector must know precisely where all pointers are, 

both in the heap and in the stack.  Since a C or C++ program can morph any integer into a 

pointer, add any constant to a pointer, and run off the end of arrays, there is no way to know 

where all references are for certain. For those languages, applications typically perform the 

deallocations, which is error-prone. As outlined in DO-332, OO.D.1.6.3 and OO.D.2.4.2.2.2, 

an exact automatic garbage collector addresses most of the issues with dynamic memory 

management. 

The fragmentation and timing issues are still present for Java in general.  

Section 6.4 and [HRTGC] show how these are addressed in the JamaicaVM implementation. 

4.3 Multithreading 

Many applications inherently need support for multiple threads. Even if not strictly necessary, 

multithreading often allows for simpler implementations.  Essentially, application designers 

have three choices to implement multithreading. 

• Create an application-specific scheduler. 

This enables tailoring to the specific needs of an application, but the implementation 

                                                 

3 More precisely, we can exclude references for which it is known they will not be used to access the 

object. 
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effort makes it only suitable for very simple systems. Even then, there is a portability 

issue.  

• Use a commercial-of-the-shelf (COTS) real-time operating system (RTOS), using the 

RTOS specific API in the application. 

This provides a full-featured RTOS with less implementation effort for the 

application; the verification of the RTOS is typically performed by the RTOS 

provider.  

As the RTOS and the programming language used by the application are defined 

separately, they are not tightly integrated. The application is typically restricted to a 

procedural interface for synchronization. Higher level concepts like monitors must be 

created explicitly at the application level.  

• Use a programming language with built-in support for multithreading. 

This reduces the implementation effort for the application and improves portability; 

the verification of the runtime environment is typically performed by the provider of 

the runtime environment.  

This approach also provides seamless integration of the programming language and 

the multithreading concept.  For example, the interaction between multithreading, 

memory management, and exception handling are precisely defined within the 

programming language. As these facilities are implemented together, there are more 

opportunities for optimizations.  The language must then provide the scheduling 

paradigm needed by the application. 

Real-time Java and Ada, among others provide such an integrated multithreading 

concept for time-critical systems. 

Conventional Java has several issues with real-time applications, e.g., undefined scheduling 

and synchronization behavior.  For this reason, the discussion here focuses on Java with the 

extensions and semantic refinements of the Real-Time and Embedded Specification for Java, 

see [RTSJ]. With these concepts applied, real-time Java provides for priority preemptive 

scheduling with priority inversion avoidance. 

When a safety-critical application to be verified is multithreaded, the timing characteristics 

play an important role. Key questions, besides the timing of the application code itself, must 

be answered. 

• What is the execution time for context switches? 

• What is the time between an event triggering a context switch and the actual 

occurrence of the context switch? This affects the reactivity of the application and is 

influenced by blocking times introduced by the application itself and the runtime 

environment.  

Blocking through the garbage collector requires particular attention. (See section 

7.1.4).  

Note: Multi-processor / multi-core systems are not considered in this paper. 

4.4 Exception handling 

Exceptions can be thrown implicitly or explicitly. Exception paths need special attention for 

coverage analysis and worst case execution time (WCET) calculations. The time required to 

locate an exception handler might include a search process that depends on the stack depth. 

This is specific to language and implementation. 

WCET with exceptions might be much longer than for the non-exception path. If callers 

always assume the exception path is taken, this might lead to very bad WCET calculations. 
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When an exception is handled locally, the caller might not even be aware that it occurred, so 

the caller may incorrectly assume that the non-exception WCET applies. 

The strategies for exception handling and WCET calculations must match. Defining these 

concepts is beyond the scope of this paper. 

4.5 Class initialization 

See [HRTGC] 10.3.1.2. Static initializers are executed upon first use of a class, which might 

be while the application is already in operational mode. Applications should devise a scheme 

for initialization. For example, classes can be explicitly initialized with the Class.forName 

method. 

4.6 Dynamic Loading 

Loading of classes is performed in two different contexts: 

• Loading the code for a pre-configured application requires making sure that only 

approved configurations are loaded. This can be achieved by restricting the possible 

sources of code, e.g. to a single image created by a builder tool.  

• Loading additional classes from dynamically computed load paths, possibly over the 

internet. This is a feature which is quite specific for Java. 

The latter is called ‘Dynamic Loading’; it essentially creates a different software 

configuration. 

The source of the dynamically loaded code must be trusted. Any new configuration must be 

verified. In other words, the system must have a means of verifying a configuration before 

actually loading. In particular, the new configuration might have different timing 

characteristics; the WCET for a method might be increased by loading an additional subclass. 

The transition between configurations makes the system vulnerable. Loading should be 

restricted to certain application states or to low priority threads. Loading is a potentially slow 

operation with potentially long blocking times. 

Note: Dynamic loading will not be considered in detail in this paper. 

4.7 Interpretation versus Compilation 

In the simplest environment, a Java compiler converts Java source code into Java Bytecode 

which then is interpreted by the Java Virtual Machine (VM). Java class libraries can also be 

distributed directly as Bytecode. As the Bytecode is standardized, any Java compiler can be 

used with any VM. 

Many Java development environments also provide a means of compiling Bytecode into 

native code for improved speed. This capability comes in two flavors: 

• Just in time (JIT) compilation: 

Based on execution statistics, the VM decides to compile part of the code while the 

application is running. This approach is not suitable for safety-critical applications for 

several reasons: 

o The need to verify the behavior of JIT compiler. 

o The inability to verify the resulting object code. 

o The effects of the compilation to the real-time behavior. 
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• Static compilation: 

When the application is built, selected parts of the code are compiled. This preferable 

in a verification context: 

o The compiler need not be verified because the resulting object code can be 

verified 

o The real-time performance is highly predictable 

Hence, in the remainder of this paper, we disregard JIT compilation. 

Compiled code has typically a higher memory demand, with a factor between 5 and 10. 

Therefore, only the most time critical methods are usually compiled, striving for a good 

balance of execution speed and code size. 

 Speed Code size  

Bytecode: slow small 

Compiled code: fast large 

The VM is responsible for actions supporting the synchronization and garbage collection 

approach. While it is relatively easy to verify the VM to perform these actions, this is not as 

easy with the compiled code. This will be discussed in more detail in section 7.5. 

 

5 Requirements for Real-time Java Implementations 

For using Java in real-time applications, an implementation must address two issues. 

• Provide precisely define real-time scheduling and synchronization algorithms, thus 

avoiding the pitfalls of the original Java specification. Two approaches are available: 

o use the Safety-Critical Java subset 

accepting severe restrictions on the language (stack-based scoped memory 

instead of heap memory, restrictions on thread use), or 

o use the Realtime and Embedded Specification for Java ([RTSJ]) 

enabling full use of Java and even extensions to its capabilities. 

• Avoid indeterminate blocking times due to the garbage collector. Simple Java 

implementations stop the whole application for a complete garbage collection cycle. 

More sophisticated Java implementations execute the garbage incrementally. 

Essentially, there are two mechanisms: 

o Run the GC in a separate thread with a scheduling scheme that given the GC 

enough execution time but does not hinder the application. The GC thread 

scheduling parameters have to be adapted for the application. 

o Work-based garbage collectors perform garbage collection in incremental 

steps. Each time the application allocates memory, the application thread also 

executes a specific amount of garbage collection work. The more allocations, 

the more GC work is done. 

The following table gives an overview of the possible combinations and their properties 

regarding the above criteria: 
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Java Type Garbage Collection approach 

Name 
Short 

Description 
Stop the world 

Incremental, 

Parallel Threads 

Incremental, 

Work based 

Conventional  

Java 
OpenJDK like 

Undefined 

Scheduling 

Unacceptable 

blocking 

Undefined 

Scheduling 

Undefined 

Scheduling 

Safety-

Critical  

Java 

Restricted Java 

without GC 

Reduced functionality 

GC not provided 

Realtime  

Java 

Java with 

RTSJ extensions & 

Deterministic GC 

Unacceptable 

blocking 

Full functionality 

GC threads to be 

configured 

Full 

functionality 

GC well 

distributed, 

easy to 

configure 
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6 Using Real-time Java with ISO 26262 and DO-332 

The ISO 26262-6:2011 standard, section 5.4.6, gives examples of programming languages 

which might be used, including Java: 

The selected programming language (such as Ada, C, C++, Java, Assembler or a 
graphical modelling language) supports the topics given in ...  

Three of these languages are object-oriented. Therefore; the intent is clearly that such OO 

languages, and in particular Java, can be used. 

The standard does not go into details for certification using OO languages or Java in 

particular. Requirements/recommendations which have particular implications when using 

OO languages are listed below. 

 

• ISO 26262-6:2011, 5.4.6 and 7.4.3, call for abstraction, modularity, encapsulation and 

runtime error handling which are well supported by Java. With the real-time 

specification, support for embedded real-time software is also covered. 

• ISO 26262-6:2011, 7.4.17, calls for upper bounds for execution time and storage 

space. While this is not specific for OO languages, it is of particular importance with 

dynamic binding and garbage collection.  

This requirement maps to DO-332 objective OO.6.3.4f. 

• ISO 26262-6:2011, 8.4.4, calls for limited use of pointers in Level D applications. 

Java does not use pointers explicitly whereas C and C++ do. 

• ISO 26262-6:2011, 10.4.6, requires metrics for the call coverage but does not 

explicitly mention dynamic binding. The objective includes demonstrating the absence 

of unintended functionality, however. This corresponds to structural coverage 

objectives of DO-178C, 6.4.4.2. 

• For configurable software, ISO 26262-6:2011, 5.4.3, requires Annex C to be applied. 

This is of particular importance when dynamic loading is used. 

As the guidance for certification of object-oriented code given in ISO 26262-6:2011 is quite 

vague, it is reasonable to compare ISO 26262-6:2011 to DO-178C and DO-332 and then look 

for additional guidance in DO-332, since DO-332 provides more detailed guidance for using 

object-oriented technology. 
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6.1 Comparison of ISO 26262-6:2011 to DO-178C 

The safety certification standard for avionics, RTCA/DO-178C, provides details for 

certification of object oriented programming that are missing in ISO-26262.  There is an 

entire supplement to DO-178C, called RTCA/DO-332, which covers certification of object-

oriented technology and related techniques.  Since DO-178C has a similar general approach to 

certification as ISO-26262, it is reasonable to use DO-332 as a reference. Here is a quick 

overview of the framework from ISO 26262-6:2011 and DO-178C with DO-332 in a tabular 

form: 

 

ISO 26262 DO-178C + DO-332 

Targets automotive sector 

High-level requirements are derived from the 

vehicle 

Targets avionic software 

High-level requirements are derived from the 

aircraft 

ISO 26262-6:2011 covers S/W 
DO-178C covers S/W  

DO-332 is for Object Oriented S/W 

Both focus on integrated safety through a defined development process 

Recommends actions 

Objectives are more implicit 

Defines objectives and leaves it to the 

applicant to plan actions to achieve the 

objectives. 

Objectives are comparable 

Based on requirements and their verification / test 

Functional safety manager role Certification authority (FAA / EASA) 

Safety assessment based on artifacts produced during product development 

Applies to system, hardware,  

and software 

Software only 

(system and hardware are handled  

in other standards) 

Applies to production & operation  

of the product 

Production out of scope 

(Covered by other standards) 

Defines life cycle phases based on V-Model 

Development process not specified. 

Suggests waterfall model,  

can be matched to V-Model. 

Re-use of components based on  

field experience 

Artifacts for previously developed software 

must comply to standards 

Both start with requirements that are refined into a design and then an implementation.  

Both are based on testing at various integration levels. 
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The following diagram compares development activities for ISO 26262-6:2011 and DO-

178C: 

Figure 6-1 V-model Verification Diagram 
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As illustrated by Figure 6-1, the processes are comparable, although DO-178C allows for 

more flexibility. 

The similarities between both frameworks are strong enough to justify the use of DO-332 as 

additional guidance. DO-332 covers certification of object-oriented code (albeit for use in 

avionic systems) in much more detail than ISO 26262-6:2011. Not all of the objectives given 

in DO-332 are necessarily required for verification according ISO 26262-6:2011. But 

applying the more detailed framework of DO-332 seems to cover the ISO 26262-6:2011 

objectives. On the other hand, with ISO 26262-6:2011 being quite vague, none of the DO-332 

objectives can easily be dismissed, at least for ASIL D. 
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6.2 Objectives and Activities for Object Oriented Software 

The following condensed table is based on the tables given in DO-332, annex OO.C. It contains a subset of the objectives and activities which were 

changed in DO-332 with respect to DO-178C, i.e., which are OO specific. Furthermore, the more general objectives for Planning, Quality 

Assurance, and Certification Liaison Process are omitted. The middle column in the table provides a short summary of the OO-specific activities 

that apply to DO-332.   References in the last two columns are to sections below the table. 

 

# DO-178C / DO-332 Objectives DO-178C / DO-332  

Activities 

Short summary of 

OO specific Activities 
Remarks for application & 

Java libraries 

Remarks for Java VM and 

runtime environment, 

including garbage collector 

1 Software Planning Process      

2 Software Development Process     

2-1 High-level requirements are 

developed.  [5.1.1.a] 
5.1.2 (a,b,c,d,e,f,g,j) 

OO.5.5.a 

Requirements to class methods 

should also trace to overriding 

definitions in subclasses. 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
N/A 

2-3 Software architecture is 

developed.  [5.2.1.a] 
OO.5.2.2 (a,d,h,i,j,k,l) h: Class hierarchy 

i: locally type consistent 

j: strategy for memory 

management 
k: strategy for exception 

management 

l: reusing components: derived 
requirements & functionality to 

deactivate 

h, i: See 6.3 Class Hierarchy, 

Tracing and Type Consistency 

j: See 6.4 Strategy for memory 

management 

k: See 6.5 Overloading and type 

conversion vulnerabilities 

l: See 6.7 Reusing components 

j: See 6.4 Strategy for memory 

management 

k: See 6.5 Overloading and type 

conversion vulnerabilities 

 

others N/A 

2-4 Low-level requirements are 

developed.  [5.2.1.a] 
OO.5.2.2 (a,e,f,g,i) 

5.2.3 (a,b) 

5.2.4 (a,b,c) 

OO.5.5.(b,d) 

OO.5.2.2 I: locally type 
consistent 

 

OO.5.5.d: traces to overriding 

method declarations in 

subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 
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# DO-178C / DO-332 Objectives DO-178C / DO-332  

Activities 

Short summary of 

OO specific Activities 
Remarks for application & 

Java libraries 

Remarks for Java VM and 

runtime environment, 

including garbage collector 

2-5 Derived low-level requirements 
are defined and provided to the 

system processes, including the 

system safety assessment process.  

[5.2.1.b] 

OO.5.2.2 (b,c, l) l: reusing components: derived 
requirements & functionality to 

deactivate 

 N/A 

2-6 Source Code is developed.  

[5.3.1a] 
5.3.2 (a,b,c,d) 

OO.5.5.c 

Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 

3 Verification of Outputs of 

Software Requirements Process 

 OO.11.14, Verification results 

include: 

Local type consistency 

Dynamic memory management 

  

4 Verification of Outputs of 

Software Design Process 

 OO.11.14, Verification results 

include: 

Local type consistency 

Dynamic memory management 

  

4-8 Software architecture is 

compatible with high-level 

requirements.  [OO.6.3.3.a] 

OO.6.3.3 Architecture does not conflict 

with HLRs: exception 
management and memory 

management. 

Trace data include traces to 
overriding method declarations 

in subclasses 

See 4.4Exception handling 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 

4-9 Software architecture is 

consistent.  [OO.6.3.2.b] 
OO.6.3.3 Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 

4-10 Software architecture is 

compatible with target computer.  

[OO.6.3.3.c] 

OO.6.3.3 Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
N/A 

4-11 Software architecture is verifiable.  

[OO.6.3.3.d] 
OO.6.3.3 Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
N/A 



Using Java in Safety-Critical Applications   

Java_Safety_Critical          Copyright  2017 VEROCEL GmbH Page 15  

# DO-178C / DO-332 Objectives DO-178C / DO-332  

Activities 

Short summary of 

OO specific Activities 
Remarks for application & 

Java libraries 

Remarks for Java VM and 

runtime environment, 

including garbage collector 

4-12 Software architecture conforms to 

standards.  [OO.6.3.3.e] 
OO.6.3.3 Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 

4-13 Software partitioning integrity is 

confirmed.  [OO.6.3.3.f] 
OO.6.3.3 Trace data include traces to 

overriding method declarations 

in subclasses 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

N/A 

5 Verification of Outputs of 

Coding & Integration Process 

 OO.11.14, Verification results 

include: 
Local type consistency 

Dynamic memory management 

  

5-1 Source Code complies with low-

level requirements.  [ OO.6.3.4.a] 
OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 

N/A 

5-2 Source Code complies with 

software architecture.  [ 

OO.6.3.4.b] 

OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 

N/A 

5-3 Source Code is verifiable.  [ 

OO.6.3.4.c] 
OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 
N/A 

5-4 Source Code conforms to 

standards.  [ OO.6.3.4.d] 
OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 

N/A 

5-5 Source Code is traceable to low-

level requirements.  [ OO.6.3.4.e] 
OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 

N/A 

5-6 Source Code is accurate and 

consistent.  [ OO.6.3.4.f] 
OO.6.3.4 Overloading and type conversion 

vulnerabilities,  

OO.D.1.3.1 & OO.D.1.4.1 

See 6.5 Overloading and type 

conversion vulnerabilities 

N/A 
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# DO-178C / DO-332 Objectives DO-178C / DO-332  

Activities 

Short summary of 

OO specific Activities 
Remarks for application & 

Java libraries 

Remarks for Java VM and 

runtime environment, 

including garbage collector 

6 Testing of Outputs of 

Integration Process 

 OO.11.14, Verification results 
include: 

Local type consistency 

Dynamic memory management 

OO.11.21, Trace data include 

traces to overriding method 

declarations in subclasses 

  

6-1 Executable Object Code complies 

with high-level requirements.  

[6.4.a] 

6.4.2 

OO.6.4.2.1 

6.4.3 

6.5 

Constructors to properly 

initialize object state. 

Initial state consistent with class 

requirements 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
 

6-3 Executable Object Code complies 

with low-level requirements.  

[6.4.c] 

6.4.2 

OO.6.4.2.1 

6.4.3 

6.5 

OO.11.14, Verification results 

include: 

Local type consistency 

Dynamic memory management 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 

See 7.4.1 Verification of the 

Garbage Collector 

7 Verification of Verification 

Process Results 

 OO.11.14, Verification results 

include: 

Local type consistency 

Dynamic memory management 

See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
 

7- 

OO 

10 

Verify local type consistency 

[OO.6.7.1] 
OO.6.7.2  See 6.3 Class Hierarchy, Tracing 

and Type Consistency 
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# DO-178C / DO-332 Objectives DO-178C / DO-332  

Activities 

Short summary of 

OO specific Activities 
Remarks for application & 

Java libraries 

Remarks for Java VM and 

runtime environment, 

including garbage collector 

7- 
OO 

11 

Verify use of dynamic memory 

management is robust [OO.6.8.1] 
OO.6.8.2. 

(a,b,c,d,e,f,g) 

a: exclusivity 

b: allocations succeed when free 

memory available 

c: memory reclaimed before 

needed 

d: sufficient memory at any time 

e: reference consistency 

f: atomic object moves 

g: bounded time operations 

d, g: See 6.4 Strategy for 

memory management 

most items are addressed jointly 

by application / memory 
configuration / runtime & 

compiler options and the runtime 

environment 

a, b, c, e: See 6.4 Strategy for 

memory management 

F: N/A 

See 7.4.1 Verification of the 

Garbage Collector 

8 Software Configuration 

Management Process 

    

9 Software Quality Assurance 

Process 

    

10 Certification Liaison Process     
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6.3 Class Hierarchy, Tracing and Type Consistency 

The class hierarchy must be developed based on the high-level requirements. 

Class constructors must properly initialize objects; the initial state must be consistent with the 

requirements for the class. 

Low-level requirements tracing to class members must also trace to the overriding members 

in all subclasses.  For example, given a low-level requirement 1 that applies to method foo in 

class A and class B is a subclass of A which overrides foo, requirement 1 applies to both 

A.foo and B.foo.  Both A.foo and B.foo must refer back to requirement 1, though B.foo may 

have additional requirements that do not apply to A.foo. 

The testing strategy must verify local type consistency. This can be done by applying tests for 

a superclass to all of its subclasses.  Formal methods can also be used to show that overridden 

methods conform to the requirements of all methods overridden. 

This is a responsibility for the application and the class libraries. 

See DO-332 OO.1.6.1.2, OO.D.1.1.3. 

6.4 Strategy for memory management 

With Java, most of the dynamic memory management aspects are covered by the runtime 

environment, which provides an exact garbage collector. Most decisions regarding dynamic 

memory management are implied by selecting Java as programming language and by 

selecting a specific Java implementation. In DO-332, this dynamic allocation with exact 

garbage collection for recycling memory is referred to as automatic heap allocation. 

The verification results should describe how the chosen Java implementation supports the 

overall goals of the application and how it matches the high-level requirements. This applies 

in particular to the real-time properties of the garbage collector and how it affects the timing 

of the application. 

Application designers must determine the maximum amount of memory used by the 

application; the heap size must be set to a value such that the used memory never exceeds a 

selected fraction of the heap size. That fraction determines the allocation overhead for 

garbage collection for that application. In other words, an application which requires more 

memory must have a larger absolute overhead to maintain the same fractional overhead. 

These items from DO-332 OO.6.8.2 are then addressed as follows: 

• a: exclusivity 

e: reference consistency 

These items are granted by the GC approach. Memory is only reused after the GC 

determined there are no references to the piece of memory to be reused. 

• b: allocations succeed when free memory is available  

In general, the Java implementation is responsible for avoiding heap fragmentation, 

e.g. by moving objects. 

For JamaicaVM , this item is granted by the distributed object model which avoids 

fragmentation issues at the time of allocation. 

• c: memory reclaimed before needed 

This is granted by the GC approach provided the application does not use more than 

the selected fraction of the heap size. 
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• d: sufficient memory at any time 

The application must not use more than designed amount of memory. Typically, the 

heap size is set to a larger value and the application must not use more than a selected 

fraction of the heap size. 

• f: atomic object moves:  

The GC is responsible for moving objects. 

For JamaicaVM , this is not applicable because objects are never moved with 

JamaicaVM.  

• g: bounded time operations:  

This would be a problem for non-real-time Java implementation, due to the 

unpredictable timing of the garbage collector. 

For real-time Java, allocation itself is a constant time operation. The amount of time 

spent with garbage collection (GC overhead) is determined by the GC parameters. 

 

The situation can also be described in a table, similar to the one from OO.D.1.6.3: 

Technique 
Activities ( DO-332 OO.6.8.2) 

a b c d e f g 

Object  

pooling 
X X X X X N/A OK 

Stack allocation 

 
X OK OK X X N/A OK 

Scope allocation 

 
OK OK OK X X OK OK 

Manual heap allocation 

 
X X* X X X N/A OK 

Automatic heap allocation OK OK OK X OK OK OK 

RT Java with 

JamaicaVM 
OK OK OK X OK N/A OK 

With the entries meaning: 

X = to be addressed by the application 

OK = addressed by memory management infrastructure 

N/A = not applicable, 

* = difficult to ensure by either application or memory management infrastructure 

Clearly, the automatic heap allocation with garbage collection puts the least burden on the 

application side. 

Note that with JamaicaVM, fragmentation and atomic moves are not an issue, due to non-

contiguous object allocation. Furthermore, the work based GC algorithm shows graceful 
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degradation: if the application uses slightly more than the designed heap fraction, the time 

used for incremental garbage collection is slightly increased. 

See DO-332 OO.D.1.6 for more details.  

Java also uses stack allocation, but JamaicaVM only uses this for local variables.  The sizes of 

runtime stacks for each thread have to be determined as for any other programming language. 

Stack overflow is detected automatically by the JamaicaVM runtime causing an exception to 

be thrown. 

6.5 Overloading and type conversion vulnerabilities 

Overloading ambiguity occurs when implicit type conversions occur when selecting an 

acceptable match. This could lead to unintended best match selection by the compiler. For 

Java, boxing and unboxing conversions as well as the use of variable arity methods have to be 

considered. 

Different programmers might unintentionally choose the same name for semantically different 

operations. 

Coding standards should address the issues listed in DO-332 OO.D.1.3.3. 

This is a responsibility for the application and the class libraries. 

See DO-332 OO.D.1.3.1, OO.D.1.4.1, OO.D.1.3.3. 

6.6 Strategy for exception management 

The mechanisms to throw, propagate and catch exceptions are defined by the Java 

programming language. 

The verification results should describe how the chosen Java implementation supports the 

overall goals of the application and how it matches the high-level requirements. 

The coding guidelines should describe in which situations exceptions should be used and in 

particular, where exception handlers should be placed (and where not). This is important for 

the timing behavior of the application. Exceptions are part of the class requirements and must 

be included in the verification of type consistency. 

There is a particular issue with exception handling regarding timing that can be illustrated by 

an example: 

If an application works with a container which might become empty, it can test 

whether the container is empty before trying to retrieve an element. As an alternative, 

it can just try retrieving an element and catch the exception thrown in case the 

container was empty.  

Functionally, both schemes work fine, but the timing might be quite different: 

• The test for an empty container is usually an operation with a small and easy to 

determine execution time.  

• Throwing and catching an exception can be much slower and the execution time is 

harder to predict. The execution time might even be influenced by non-local 

properties.  

  With JamaicaVM, the overhead of throwing an exception is determined by 

creation of the exception object and the search for the corresponding handler. Unless 

preallocated exception objects are used, creation of an exception requires allocation 

for the exception object itself, and of the stack trace that is stored in the exception and 
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depends on the call depth when the exception is created. The search for an exception 

handler is determined by the number of the stack frames to be removed until the 

exception handler is found, see [HRTGC] 10.3.3. 

With the exception approach, the average execution time for accessing an element might be 

smaller; the worst case execution time is likely to be worse, however.  In Java, it is not 

possible to remove all exception handling, but one must understand their effect on WCET.  In 

general, exceptions should be used sparingly, where code readability considerations 

overweigh the extra time required for generating an exception in the case of failure. 

6.7 Reusing components 

Reuse of components typically applies to class libraries, be it libraries defined in the 

application domain or those belonging to the Java runtime environment. 

Only Java libraries which come with verification artifacts should be considered as 

components; in other words, libraries where requirements and a complete set of 

corresponding tests are available.  Other libraries have to be treated like parts of the 

application.  

The following issues should be addressed, for more details, see DO-332 OO.D.2.3.1. 

a. Components developed outside the system context might not fully satisfy the intended 

functionality or they may provide more functionality than needed. 

b. Life cycle data may be developed to different standards. 

c. Error management for components might follow a different policy than required by 

the system. Wrappers might be needed. See also section 6.6. 

d. Resource management might be different (heap, stack, processor cycles, and 

synchronization).  

• Memory management: 

As Java includes a complete, exact garbage collector, stack and heap management 

are addressed within the runtime environment. The stack and heap usage by the 

component must nevertheless be documented. 

• Execution time: 

Unless the component was verified in the Java environment, timing information is 

likely to be missing or to be inadequate, due to the work-based GC approach. Even 

if provided, execution lime limits for the component might be specified in a form 

which is incompatible with the approach selected for the application.  

e. Presence of deactivated code: Parts of the reused component might not be needed in 

the given system. 

f. Integration testing, including data coupling analysis and control coupling4 analysis 

may be difficult without internal knowledge of the component. 

The reused component may be available as source code, Java Bytecode or as object code. If 

source code is not available, this makes the analysis more complicated. This affects in 

particular item f above; the timing analysis is also affected. 

                                                 

4 ISO 26262-6:2011 does not use the term “control coupling”, but it requires metrics for the call coverage. 

Full call coverage implies that all possible calls have been verified, which means control coupling was 

verified. 
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Though integration testing is always required, other retesting can only be avoided where the 

same object code or the same bytecode and interpreter are used.  For static compilation, this 

means compiling the same set of methods with the same settings and interpreting the 

remaining set.  WCET is dependent not only on the hardware, but also what code is compiled 

and what code is interpreted. Technically, it is possible to extend the class hierarchy by 

introducing application-specific subclasses of classes defined within reused components. 

First, this requires a good understanding of the component, including access to source code 

and documentation. Second, it requires special attention when verifying the class hierarchy 

and type consistency as described in section 6.3. 
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7 Verification with JamaicaVM 

This section describes what’s to be done when using JamaicaVM, taking into account the 

specific implementation details.  

Note that this section does NOT list all those activities which are required regardless of the 

use of Java. We assume the reader to be aware of the verification activities applicable for 

non-object-oriented implementations, e.g. using the C programming language. 

7.1 Verifying JamaicaVM Applications 

Coding guidelines must be established, in particular covering the aspects from sections 6.5 

and 6.6.  

Verify the class hierarchy and type consistency as described in section 6.3. 

For compiled parts of the application, the issues described in section 7.5 apply. 

7.1.1 Storage Requirements 

Establish a scheme to determine boundaries for storage requirements. Define the required 

heap size and the minimum amount of unused heap memory.  

The JamaicaVM environment provides tools for measuring the memory usage. 

Consider monitoring the storage used and define the behavior of the application in case the 

storage limit should be exceeded.  

7.1.2 Execution Time Limits 

Establish a scheme to determine boundaries for execution time:  

• Will the execution time be calculated or measured?  

• Will it be determined for the application as a whole, per subsystem or at a method 

level?  

• How will the variability of execution times for overridden member methods in a class 

hierarchy be accounted for?  

Worst case execution times can be considered as post-conditions. The LSP implies 

that subclasses cannot exceed the timing limits defined for their superclass. This might 

not apply strictly for all class hierarchies and using this approach implies the WCET is 

specified on the function level. 

Decide whether the GC overhead will be configured statically or adjusted dynamically. 

Make sure any time measurements are done in a configuration with worst case garbage 

collection overhead; even if the application is going to dynamically adjust the GC overhead to 

the heap usage, measurements should be made with a static setting corresponding to the 

situation with maximum expected heap usage. 

JamaicaVM supports two array layouts: linear (contiguous) and tree arrays.  For arrays that 

are not pre-allocated, time measurements should be made with the optimization for 

contiguous array allocation switched off. This optimization depends on being able to allocate 

an array in a contiguous set of -blocks in memory, which cannot be guaranteed, in particular 

after the system has been running a long time and memory is nearly exhausted. See [HRTGC] 

7.3.3. 
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7.1.3 Exception handling scheme 

Establish a scheme for exception handling, including the consequences of exceptions 

regarding execution time, as discussed in section 6.6.  

The scheme to be used must be compatible with existing class libraries to be used. So, in 

practice, there may be little choice. 

Even if rarely expected in safety-critical Java code, specify whether the code is expected to be 

executable with runtime checks suppressed. 

7.1.4 Guaranteed response times 

Establish a scheme to guarantee required response times. Select the compiler and runtime 

options to match the expected response times.  

A real-time Java implementation must ensure that the garbage collector does not interfere 

with the running program and that changes by one are seen immediately by the other.  This 

can be done either with locks and read barriers or with well-defined synchronization points.  

In general, using synchronization points is more efficient for a very small latency penalty. 

JamaicaVM restricts garbage collection and scheduling actions to so-called synchronization 

points. At these synchronization points, the heap must be in a consistent state, allowing for 

incremental garbage collection by other threads. Between synchronization points, there is no 

need to guarantee the GC invariants and there is more opportunity for optimizations.  The 

distance between synchronization points is such that the time to run from one to the next is 

much smaller than the time for the OS to switch contexts. 

Clearly, the maximum distance between synchronization points is critical for response times: 

• The JamaicaVM bytecode interpreter inserts synchronization points at defined time 

intervals.  

• The JamaicaVM garbage collector is interruptible between the processing steps for 

memory blocks, due to explicitly programmed synchronization points. 

• For compiled code, be it application code or libraries, the JamaicaVM compiler inserts 

synchronization points5. See also section 7.5. 

Figure 7-1 illustrates the difference between interpreted and compiled code. 

                                                 

5 The application can select the distance between sync points. If the value is different from the one which 

was assumed when compiling libraries (and the one implemented in the VM, see 7.4), the larger value 

determines the responsiveness of the application as a whole. See jamaicavm_8.0_manual, section 14: Option -

threadPreemption=n  
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Figure 7-1  Synchronization points in interpreted versus compiled code 
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7.1.5 Interoperability between application code and libraries 

With JamaicaVM, there are several compiler and runtime options which affect the overall 

properties of the resulting application. The interaction of these options must be understood. 

The application defines the parameters for the garbage collector, in particular the maximum 

fraction of the heap size used by the application and the amount of GC overhead per 

allocation. This must be taken into account when determining the execution time of library 

functions. 

If library code is interpreted rather than compiled, changes in runtime options will also affect 

library code (its execution time, in particular). 

7.1.6 Interoperability with Native Code 

Java enables the use of native code, written in programming languages like C.  This causes a 

couple of problems regarding memory management, as the native code cannot be expected to 

cooperate with the garbage collector like the Java code does.  Hence, native code must not 

access any memory which is subject to garbage collection except through functions defined 

by the Java Native Interface, JNI.  Any memory allocated by native code must be separate 

from the heap used by Java.  Furthermore, native code will have different behavior regarding 

scheduling than Java code: native code will not include explicit synchronization points. 

JamaicaVM supports JNI, which does not allow direct access to Java memory; any access has 

to be performed through calls of JNI routines. With JamaicaVM, native code is executed in 

parallel to Java threads, with scheduling enabled.  

Thus, the execution time of native code does not affect the response time of the application, 

nor does it interfere with the garbage collector. See [HRTGC] 5.8.2. 

7.2 Verifying Third Party Libraries 

Libraries which are delivered with verification artifacts according to the applicable standard 

and the required safety level can be considered as components as described in section 6.7. 
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Other libraries must be verified together with the application, the previous section applies. 

The following additional issues should be considered: 

• If libraries are delivered without source code, creating verification evidence is quite 

difficult, if not impossible.  

• If source code comes with legal restrictions, it becomes more difficult to remove 

unused parts (in order to reduce cost) or to correct issues found during verification. 

• Missing documentation about the internals of the library makes verification more 

difficult. 

• Verifying third party code is more difficult than verifying your own code. 

7.3 Verifying the JamaicaVM Libraries 

The term JamaicaVM Libraries is herein used for libraries provided with the JamaicaVM 

development environment for which aicas is willing to assume responsibility for creating 

verification artifacts. What this library contains must be defined for each project. Other 

libraries should be considered as third-party libraries, even if provided with JamaicaVM. 

A subset of the available libraries must be selected and verified. 

Coding guidelines must be established, in particular covering the aspects from sections 6.5 

and 6.6.  

Verify the class hierarchy and type consistency as described in section 6.3. 

In contrast to third-party libraries, there is a better chance to provide useful timing 

information which can be integrated into the timing analysis of the application. However, the 

current approach is to leave timing to the application. 

The current approach is to let the user decide which parts of the code are compiled. In case the 

object code is also delivered with JamaicaVM, the compiler options used to compile libraries 

must not introduce compatibility problems with applications. It may be possible to provide the 

binaries for libraries for a limited number of variants, with different compiler option settings 

and to allow the application developer to select the best-suited variant.  

For compiled parts of the libraries, the issues described in section 7.5 apply. 

7.3.1 Storage Requirements 

Establish a scheme to determine boundaries for storage requirements. For libraries, this must 

be done in a way such that the application developers can integrate the results into their 

environment: 

• Provide formulas to calculate the storage requirements, or 

• Provide information how to measure the maximum storage requirements. 

7.3.2 Execution Time Limits 

Establish a scheme to determine execution times. For libraries, this must be done in a way 

such that the application developers can integrate the results into their environment: 

• Provide formulas to calculate the execution times, or 

• Provide information how to measure the maximum execution times. 

In particular, the influence of the GC overhead per allocation needs to be addressed. 
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7.3.3 Exception handling scheme 

Establish a scheme for exception handling, including the consequences of exceptions 

regarding execution time, as discussed in section 6.6.  

For new development, the decisions made here must not unduly restrict the exception 

handling approach used by applications. Class interfaces should be designed to allow using 

them without being forced to work with exception handlers for normal operations. Exceptions 

should only be used for handling situations that represent real errors. See the example given in 

section 6.6. 

For the vast majority of classes delivered with JamaicaVM, there is no option to change the 

class interface design, but the interface of the Java standard edition class libraries is used 

exactly as is done by OpenJDK, etc. Hence, application designers must adapt their exception 

handling strategy accordingly. 

7.4 Verifying the JamaicaVM Runtime Environment 

The runtime environment, namely the JamaicaVM, consisting of the Java interpreter, the 

garbage collector, the class loader and the support code, need to be verified as any software 

included in a safety-critical system. Here, we concentrate on the specific requirements 

affecting memory management and real-time characteristics: 

(1) Insertion of synchronization points. 

(2) Insertion of write barriers. 

(3) Copying references from stack to root arrays. 

In support of point (1), the Java interpreter contains code to execute a synchronization point 

after executing every single bytecode. All other code in the runtime environment, including 

the garbage collector, contains synchronization points which make sure the time between 

executing synchronization points never exceeds the designed limit. Every allocation (new 

instruction) contains a synchronization point.  Figure 7-2 illustrates a method of implementing  

synchronization points.  This limit needs to be precisely documented6. The intent is to make 

the limit small compared to the context switch time.  Since context switch time also varies 

with the CPU speed, the limit in terms of maximum number of instructions can be fixed.  In 

any case, it is not application dependent. 

It seems feasible to create a relatively simple tool which partially verifies this property on the 

object code, pointing out the locations where synchronization points might be missing, or 

where a manual analysis is necessary. Such a tool could also be used to verify the compiler 

output, see section 7.5. 

                                                 

6 The distance between synchronization points within the runtime system, including the interpreter, cannot 

be changed easily; it is fairly small, but platform dependent. Assuming that all applications will contain 

code which is interpreted, it does not make much sense to use a different limit for compiled code. 
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Figure 7-2: Placing Synchronization Points into the compiled code 

 

The VM is responsible for implementing items (2) and (3). No attempt is made for 

optimizations, as interpretation of Bytecode is relatively slow anyway. Any code in the 

runtime environment that deals with references into the heap must also be verified to adhere 

to the protocol. 

7.4.1 Verification of the Garbage Collector 

The verification of the garbage collector is not much different from other code of the runtime 

environment. 

The properties of the garbage collector regarding correctness of the GC algorithm (e.g. GC 

invariants) become functional requirements. The most interesting aspect seems to be the 

garbage collector progress. The claims made in [HRTGC] 9.5 need to be transformed into 

high-level requirements and verified using the material present in [HRTGC], taking into 

account that the implementation has been optimized since [HRTGC] was written. 

7.5 Verification of Compiler Output 

When Java Bytecode is compiled rather than interpreted by the Jamaica VM, the compiler 

takes over the responsibility for requirements (1), (2) and (3) as listed in section 7.4. 

Figure 7-3 shows the simplified structure of the JamaicaVM compiler, ignoring the rest of the 

builder. The white boxes represent third-party tools.  The orange part is for purely interpreted 

Java Bytecode; the blue part is the Java compiler. The green part is about verification; the 

dashed part does not currently exist, it is just a proposal. 
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Figure 7-3: Certifying the Output of the Compiler7 
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The compile chain currently works as follows: 

• Java source code is compiled into Bytecode with any Java compiler. This step is not 

aware of the JamaicaVM runtime environment. 

• The front end of the JamaicaVM compiler transforms Java Bytecode into Intermediate 

Code, implementing requirements (1), (2), and (3).  

• The intermediate code is optimized, in particular regarding implementation of (3). 

• On the intermediate code, several checks are performed regarding (1), (3).   

• The back end of the JamaicaVM compiler then transforms intermediate code into C 

source code. 

• The C code is compiled with a COTS C compiler (gcc). The verification of the 

compiler is not required (and not considered feasible). 

Even if the Intermediate Code is fully verified, the last two steps could theoretically introduce 

errors. 

It is an open issue to decide whether the verification performed on the Intermediate Code is 

sufficient and can be qualified under the requirements of ISO 26262-6:2011. What is the tool 

confidence level of the compiler chain in general and for the verification of the three 

requirements discussed here in particular? While many errors in the compiler tool chain can 

                                                 

7 Dotted lines represent elements still to be done. 
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be detected by requirements-based testing of the resulting object code, the issues listed below 

are much harder to test: 

• A missing synchronization point would just increase the latency for context switches.  

• An error in inserting write barriers or copying references from the stack to root arrays 

would result in a memory management error, which may (but often will not) lead to 

deallocation of an object still in use. This is hard to find through testing; if an error is 

detected, it still remains unclear which piece of code is incorrect.  

Essentially, there are two ways to approach the verification of requirements (1), (2), and (3): 

• Create a convincing argument for trusting the requirements are still satisfied by the 

object code. 

• Develop a tool that can verify the above issues by analysis of the object code, possibly 

helped by additional data from the verification on the intermediate code. 

Note that a verification tool for (1) would also help in the verification of the runtime 

environment. 

A compiler which directly compiles Java Bytecode into object code is planned. Ideally, this 

compiler would include a verification step working on object code. 

8 Potential Problems 

See [HRTGC] 10 for more issues not addressed by ISO 26262-6:2011 or DO-332. 
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9 Conclusion 

The OO aspects of Java require OO specific verification activities as for any OO language, as 

expected. 

A lot of libraries are available, from third parties as well as delivered with the Java 

implementation in use. In any case, using these libraries requires planning for their 

verification and the integration of the verification artifacts into the application’s evidence. 

The use of a garbage collector makes life relatively easy from an application perspective. The 

major part of the verification effort for memory management is shifted to the implementation 

of the Java runtime environment.  

When Java is used for real-time applications, a deterministic timing behavior is required, 

including a defined response time to external events. This is addressed by using: 

• The semantic refinements and additional APIs of the Real-time and Embedded 

Specification for Java ([RTSJ]). 

• A real-time garbage collector, providing incremental garbage collection and a defined 

response time, as included in JamaicaVM. 

Verifying the Java bytecode interpreter and the garbage collector is not particularly difficult.  

The most difficult part is the verification of the ‘global’ requirements, which support the GC 

strategy and the real-time behavior and apply to all Java code. For interpreted code, the 

interpreter takes over this responsibility; the verification is relatively straight forward. For 

compiled code, the verification is harder to accomplish, the compiler might have to be 

adapted. Although section 7.4 is specific for JamaicaVM, other real-time Java environments 

are expected to have similar requirements.  

The following steps need to be addressed 

• Verification of the runtime environment, including  

o the Java Bytecode interpreter (virtual machine) and 

o the garbage collector  

o the class loader 

• Determine a strategy to verify compiled code regarding the ‘global’ requirements. 

o Can we trust the compiler? 

o Is a checking tool feasible? 

• Define set of Java libraries to be used by applications 

o Who is responsible for their verification? 

Further work needs to be done to investigate dynamic class loading and using multicore or 

multiprocessor platforms. 
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Appendix A Acronyms 

API Application Programmers Interface 

ASIL Automotive Safety Integrity Level  

CPU  Central Processing Unit 

COTS commercial of-the-shelf 

EASA European Aviation Safety Agency 

FAA Federal Aviation Administration 

GC garbage collector 

HRTGC Hard Real-time Garbage Collection  

JNI Java Native Interface 

JIT Just in time (compilation) 

LSP Liskov Substitution Principle 

OO Object Oriented / Object Orientation 

PDS  Previously Developed Software (a DO-178C term) 

RTSJ Real-time and Embedded Specification for Java 

RTOS Real-time Operating System 

SP Synchronization Point 

VM Virtual Machine 

WCET worst case execution time 
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Appendix B  Example for OO paradigm implemented by switch 

In a hierarchy like the one given in Figure B-1, the inheritance mechanism will make sure that 

each subclass provides all four operations. 

Figure B-1  Example Hierarchy 
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The above could be implemented directly in an OO language like Java. 

In an equivalent C implementation, the distinction between protocols will be expressed by a 

switch construction like the one shown in Figure B-9-2: 

Figure B-9-2  Implementation by switch construct in C 

void open () 
{
    switch (protocol_type)
        {
        case UPD:
            {
            /* handle UDP */
            }

        case TCP:
            {
            /* handle TCP */
            }

        default:
            {
            /* handle errors */
            }
        }
}

void write () 
{
    switch (protocol_type)
        {
        case UPD:
            {
            /* handle UDP */
            }

        case TCP:
            {
            /* handle TCP */
            }

        default:
            {
            /* handle errors */
            }
        }
}

void read () 
{
    switch (protocol_type)
        {
        case UPD:
            {
            /* handle UDP */
            }

        case TCP:
            {
            /* handle TCP */
            }

        default:
            {
            /* handle errors */
            }
        }
}

void close () 
{
    switch (protocol_type)
        {
        case UPD:
            {
            /* handle UDP */
            }

        case TCP:
            {
            /* handle TCP */
            }

        default:
            {
            /* handle errors */
            }
        }
}

 

The switch constructs in all functions have to be maintained and kept consistent. When a new 

operation is added, it must support all existing protocols. When a new protocol is added, all 



Using Java in Safety-Critical Applications   

Java_Safety_Critical          Copyright  2017 VEROCEL GmbH Page 34  

operations must be adapted. The latter also makes configuration control harder; adding a new 

protocol must not introduce errors in existing protocols. 

In either implementation, we must verify that all protocols behave consistently.  


