
The Verification Company

Software Development and Verification
compliance to DO-178C/ED-12C

DO-178C/ED-12C in Context

© Verocel 2017

Airworthiness Requirements

• Federal Aviation Regulation (FAR) 25 —
Airworthiness Standards: Transport Category
Airplanes

• Certification Specification CS-25 is the
European equivalent

• Others exist for gliders (CS-22), light aircraft
(FAR 23/CS-23), helicopters (FAR 27/CS-27 &
FAR 29/CS-29) and hot air balloons (FAR
31/CS-31HB)

© Verocel 2017

CAST

• Certification Authorities Software Team

• International group of certification authority
representatives

• Harmonization of certification positions on
software & electronic hardware

• CAST position papers

• http://www.faa.gov/aircraft/air_cert/design_a
pprovals/air_software/cast/cast_papers/

© Verocel 2017

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

Document Overview

© Verocel 2017

Software Level

• Software levels determined by system safety
assessment process (usually done in
accordance with SAE ARP4754)

• Based on potential failure conditions

• 5 levels from Level A (the most rigorous) to
Level E (the least rigorous)

• Objectives & independence varied by software
level

• We’ll outline these objectives in this
presentation

© Verocel 2017

Failure Condition

• Software criticality levels

© Verocel 2017

Failure Condition Software Level

Catastrophic Level A

Hazardous/Sever - Major Level B

Major Level C

Minor Level D

No Effect Level E

©

SOFTWARE LIFE-CYCLE

© Verocel 2017

Software Life Cycle Processes

• Software planning process (DO-178C/ED-12C §4)

• Software development processes (DO-178C/ED-12C §5)

• Integral processes

– Software verification process (DO-178C/ED-12C §6)

– Software configuration management process (DO-
178C/ED-12C §7)

– Software quality assurance process (DO-178C/ED-12C §8)

– Certification liaison process (DO-178C/ED-12C §9)

© Verocel 2017

Conventional Waterfall Model

© Verocel 2017

Example From DO-178C/ED-12C

© Verocel 2017

©

DO-178C PROCESSES AND
ACTIVITIES

© Verocel 2017

Planning process

• Purpose

– Defines the means of producing software which satisfy the
system requirements and provide the level of confidence
which is consistent with the airworthiness requirements

• Output:

– Plan for Software Aspect of Certification (PSAC)

– Software Development Plan (SDP)

– Software Verification plan (SVP)

– Software Quality Assurance Plan (SQPP and SQAP)

– Software Configuration Management Plan (SCMP)

– Design standards (SDS)

© Verocel 2017

Planning process – Table A-1

© Verocel 2017

Development process

• Purpose:

– Develop the system requirements in one or more level of
software requirements

– Develop the software architecture

– Produce the source code

– Integrate the software components to produce executable

• Outputs

– Software Requirement Specification (SRS)

– Software Design Description (SDD)

– Source Code

– Executable object code

© Verocel 2017

Development process – Table A-2

© Verocel 2017

High-Level Requirements

• Compliance with system requirements

• Accuracy and consistency

• Compatibility with the target computer

• Verifiability

• Conformance to standards

• Traceability

• Algorithm aspects

© Verocel 2017

Verification of S/W requirements – Table A-3

© Verocel 2017

Verification of S/W Design

© Verocel 2017

Low-Level Requirements

• Compliance with high-level requirements

• Accuracy and consistency

• Compatibility with the target computer

• Verifiability

• Conformance to standards

• Traceability

• Algorithm aspects

© Verocel 2017

Software Architecture

• Compatibility with the high-level requirements

• Consistency, esp. data flow and control flow

• Compatibility with the target computer

• Verifiability

• Conformance to standards

• Partitioning integrity

© Verocel 2017

Software Coding Process

• Compliance with LL requirements and
architecture

• Accuracy and consistency

• Verifiability

• Conformance to standards

• Traceability

• Parameter Data Items

• Integration Process is correct

© Verocel 2017

Parameter Data Items

• Parameter Data Items can be developed and
verified separately if certain conditions are met
– Can be used to configure run-time environment

• The high-level requirements describe how the
software uses the parameter data items

• The low-level requirements define the structure,
attributes and allowable values of the parameter
data items

• Verification should show that every data element
has the correct value

© Verocel 2017

Coding and Integration Process – Table A-5

© Verocel 2017

Verification processes

• Purpose:

– Verification of the software requirement process

– Verification of software design process

– Verification of the SW coding and integration

• Challenges:

– The cost may represent up to 50% of the total
effort.

© Verocel 2017

Reviews and Analyses

• Reviews provide a qualitative assessment of
correctness, e.g. an inspection of an output of
a process guided by a checklist or similar aid
(DO-178C/ED-12C §6.3)

• Analyses provide repeatable evidence of
correctness (DO-178C/ED-12C §6.3)

© Verocel 2017

Reviews and Analyses

• High-Level Requirements (DO-178C/ED-12C §6.3.1)

• Low-Level Requirements (DO-178C/ED-12C §6.3.2)

• Software Architecture (DO-178C/ED-12C §6.3.3)

• Source Code (DO-178C/ED-12C §6.3.4)

• Outputs of the Integration Process (DO-178C/ED-12C §6.3.5)

• Test Cases, Procedures and Results (DO-178C/ED-12C §6.4.5)

© Verocel 2017

Outputs of the Integration Process

• Detailed examination of the linking and
loading data and memory map

• Topics include:

– Incorrect hardware addresses

– Memory overlaps

– Missing software components

© Verocel 2017

©

SOFTWARE TESTING AND
VERIFICATION

© Verocel 2017

Test Environment

• Preferred test environment includes the software
loaded into the target computer and tested in a
high fidelity simulation of the target computer
environment

• Some testing may need to be performed on a
small software component that is functionally
isolated from other software components

• Selected tests should always be performed in the
integrated target computer environment

• Emulators and simulators
• Tool qualification

© Verocel 2017

Normal Range Test Cases

• Real and integer input variables

• Time-related functions

• State transitions

• Software requirements expressed by logic
equations

© Verocel 2017

Equivalence Classes

• Exhaustive testing is impractical for non-trivial
programs

• Equivalence class: “The partition of the input
domain of a program such that a test of a
representative value of the class is equivalent
to a test of other values of the class” (DO-
178C/ED-12C Glossary)

© Verocel 2017

Robustness Testing

• Real and integer variables

• System initialization during abnormal
conditions

• Possible failure modes of the incoming data

• Loops

• Protection mechanisms for exceeding frame
times

• Time-related functions

• State transitions

© Verocel 2017

Testing of Integration Process – Table A-6

© Verocel 2017

Verification of Verification Process – Table A-7

© Verocel 2017

Test Coverage Analysis

• Requirements-based test coverage analysis

• Structural coverage analysis

© Verocel 2017

Requirements Coverage Analysis

• Test cases exist for each software requirement

• Test cases satisfy the criteria of normal and
robustness testing

• Test coverage of high-level requirements
required at Levels A, B, C and D (with
independence at Level A)

• Test coverage of low-level requirements not
required at Level D

© Verocel 2017

Structural Coverage Analysis

• MC/DC

• Decision Coverage

• Statement Coverage

• Data Coupling and Control Coupling

• All test cases used to achieve structural
coverage should be traceable to requirements

© Verocel 2017

Structural coverage

• Terminology

© Verocel 2017

if A=B and (C or D<3) then

Boolean Operators

Boolean Variable

Conditions

Decision

Decision coverage

• Boolean expressions tested in control structures
(such as the if-statement and while-statement)
must be evaluated to both true and false.
Additionally, this measure includes coverage of
switch-statement cases, exception handlers, and
interrupt handlers.

• For the decision (A or B), test cases (TF) and (FF)
will toggle the decision outcome between true
and false. However, the effect of B is not tested;
that is, those test cases cannot distinguish
between the decision (A or B) and the decision A.

© Verocel 2017

Condition coverage

• Requires that each condition in each decision
evaluate to both TRUE and FALSE at least once

• For the decision (A or B) test cases (TF) and
(FT) meet the coverage criterion, but do not
cause the decision to take on all possible
outcomes.

• As with decision coverage, a minimum of two
tests cases is required for each decision.

© Verocel 2017

Condition Decision coverage

• Combines the requirements for decision coverage with
those for condition coverage. That is, there must be
sufficient test cases to toggle the decision outcome
between true and false and to toggle each condition
value between true and false. Hence, a minimum of
two test cases are necessary for each decision.

• Consider the following C/C++ code fragment:

if (A>=0 or B>=0) /* supposed to be a and */

C = sqrt (A) + sqrt (B);

– Tested OK with (1 , 1) and (-1, -1). Will fail with (1,-1) and
(-1,1).

© Verocel 2017

MC/DC

• The MC/DC criterion enhances the condition/decision
coverage criterion by requiring that each condition be
shown to independently affect the outcome of the
decision. The independence requirement ensures that
the effect of each condition is tested relative to the
other conditions.

• In general, a minimum of N+1 test cases for a decision
with N inputs. For the example (A or B), test cases (TF),
(FT), and (FF) provide MC/DC. For decisions with a
large number of inputs, MC/DC requires considerably
more test cases than any of the coverage measures
discussed above.

© Verocel 2017

Structural coverage

• Must account for “hidden” decision:
A = (C and D);
if (A)

/* something */
A decision is not synonymous with a branch point. MC/DC applies

to all decisions, not just those within a branch point.

• And also :
A = B or C; (statement 1)
E = A and D; (statement 2)
These two statements are logically equivalent to:
E = (B or C) and D; (statement 3)

• A test set that provides MC/DC for statements 1 and 2 individually will not
necessarily provide MC/DC for statement 3. For this example, tests (TFT),
(FTF), and (FFT) for (B,C,D) provide MC/DC for statements 1 and 2
individually, but do not provide MC/DC for statement 3.

© Verocel 2017

Coverage at Level A

• At the object code level, MCDC is equivalent to
decision coverage.

© Verocel 2017

if A=0 then
if B<2 then

if C>5 then
P;

end if;
end if;

end if;

if (A=0 && B< 2 && C>5) { }

MCDC not required for this code

Data Coupling and Control Coupling

• Data coupling – The dependence of a software
component on data not exclusively under the
control of that component (DO-178C/ED-12C
Glossary)

• Control coupling – The manner or degree by
which one software component influences the
execution of another software component
(DO-178C/ED-12C Glossary)

© Verocel 2017

Verification of Data & Control Coupling

• Reviews and analysis of Software Architecture
(DO-178C/ED-12C §6.3.3.b)

• Reviews and analysis of Source Code (DO-
178C/ED-12C §6.3.4.b)

• Requirements-based testing, confirmed by
structural coverage analysis (DO-178C/ED-12C
§6.4.4.d)

© Verocel 2017

Analysis of Data & Control Coupling

• “Test coverage of software structure, both data coupling and
control coupling, is achieved” (DO-178C/ED-12C §6.4.4.d)

• “Analysis to confirm that the requirements-based testing has
exercised the data and control coupling between code
components” (DO-178C/ED-12C §6.4.4.2.c)

• The intent behind this objective is to ensure that applicants
do a sufficient amount of hardware/software integration
testing and/or software integration testing (DO-248C/ED-94C
FAQ #67)

© Verocel 2017

Structural Coverage Analysis Resolution

• Shortcomings in requirements-based test
cases or procedures

• Inadequacies in software requirements

• Dead code

• Deactivated code

© Verocel 2017

©

SOFTWARE CONFIGURATION
MANAGEMENT

© Verocel 2017

CM process

• Purpose

– Provide defined and controlled configuration of the
software

– Provide the ability to consistently replicate the excutable
object code (or re-generate it if needed)

– Provide consistency and repeatability in the process
activities

– Provide baselines and know points for reviews

– Provide controls to ensure problems receive attention and
changes are recorded, approved and implemented

© Verocel 2017

CM process

© Verocel 2017

©

SOFTWARE QUALITY ASSURANCE

© Verocel 2017

Quality Assurance Process

• Purpose

– Provide assurance that SW development and
integral process comply with the approved plans
and standards

– Provide assurance that transition criteria for
processes are satisfied

– Provide assurance that a conformity review of the
software product is conducted.

© Verocel 2017

QA process

© Verocel 2017

Certification Liaison

• Purpose :

– Establish communication and understanding
between the applicant and the certification
authority

© Verocel 2017

Certification Evidence (Life cycle data)

© Verocel 2017

• Plan for software aspects of

certification (PSAC)

• Software quality assurance

plan

• Software configuration

management plan

• Software development plan

• Software requirements

standards

• Software design standards

• Software coding standards

• Software verification plan

• Software requirements

specification

• Software design document

• Version description

document

• Traceability matrix

• Software development folder

• Design reviews

• Code reviews

• Test reviews

• Functional tests

• Coverage results

• Tool qualification

documentation

• Software accomplishment

summary (SAS)

Software Verification Results

• Detailed and overall pass/fail results

• Configuration item or software version
verified

• Results of tests, reviews and analyses

© Verocel 2017

©

TOOLING CONSIDERATIONS

© Verocel 2017

How to Prove Traceability?

© Verocel 2017

Linkage

Test Results

Test Procedures

Source Code

Design

Requirements

Review

Review

Review

Review

Review

Verocel VeroTrace

• VeroTrace
– Verification Life-Cycle Management Tool

– Manages Requirements, Design, Tests,
Coverage, Problem Reports, and more.

– Provides full Traceability between all of the
Artifacts
• Eases showing completeness of traceability

– Enforces Software Development Processes

– Impact Analysis for Changes

– Generates Browseable Certification Evidence (on
DVD)

– Qualified to DO-330, TQL-5

Verocel Proprietary 61

Verocel Tools – Verification Tools

• VerOCode

– Level A Object Code Coverage tool

– Test on target without instrumenting the code

– Addresses MCDC coverage

– Qualified to DO-330, TQL-5

• VeroSource

– Level A Source-based coverage tool

– Qualified to DO-330, TQL-5

• VeroLink

– Satisfies Control Coupling criteria

– Qualified to DO-330, TQL-5

• VeroStack

– Measures and calculates Worst Case stack use

– Qualified DO-330, TQL-5

• PICSim

– Instruction level simulator, Coverage Analyzer, Test Manger

– Qualified

Verocel Proprietary 62

Tool Qualification

• Tool qualification is necessary when DO-
178C/ED-12C processes are eliminated,
reduced or automated by use of a software
tool without its output being verified (DO-
178C/ED-12C §12.2.1)

• Tool qualification is handled quite differently
in DO-178C/ED-12C compared to DO-
178B/ED-12B

© Verocel 2017

©

Tool Qualification
Software
Level

Criteria 1 Criteria 2 Criteria 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

Criteria 1: A tool whose output is part
of the airborne software and thus
could introduce an error

Criteria 2: A tool that is used to justify
eliminating a development process or
a verification process other than the
one automated by the tool

Criteria 3: Any other tool that could fail
to detect an error

© Verocel 2017

The Verification Company

The End

